\(x=a^2-bc,y^2=b^2-ac,z=c^2-ab\). Chứng minh rằng:

(x+y+z).(a+b+c)=ax+by+cz<...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2017

a) https://hoc24.vn/hoi-dap/question/398481.html

b)

a2 + b2 + c2 = ab + ac + bc

<=> 2a2 + 2b2 + 2c2 = 2ac + 2ab + 2bc

<=> (a2 - 2ac + c2) + (a2 - 2ab + b2) + (b2 - 2bc + c2) = 0

<=> (a - b)2 + (a - c)2 + (b - c)2 = 0

<=> a = b = c

17 tháng 7 2017

1. Ta có:

\(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)

=> \(a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+2axby+b^2y^2\)

=> \(a^2y^2+b^2x^2=2axby\)

=> \(a^2y^2+b^2x^2-2axby=0\)

=> \(a^2y^2+b^2x^2-2aybx=0\)

=> \(\left(ay-bx\right)^2=0\)

\(\left(ay-bx\right)^2\ge0\)

Dấu '' = '' xảy ra \(\Leftrightarrow\) \(ay-bx=0\)

\(\Leftrightarrow\) \(ay=bx\)

\(\Leftrightarrow\) \(\dfrac{a}{x}=\dfrac{b}{y}\)

2. Ta có:

\(a^2+b^2+c^2=ab+bc+ac\)

=> \(2a^2+2b^2+2c^2=2ab+2bc+2ac\)

=> \(2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

=> \(\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\)

=> \(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)

Ta thấy:

\(\left(a-b\right)^2\ge0\); \(\left(a-c\right)^2\ge0\); \(\left(b-c\right)^2\ge0\)

=> \(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\)

\(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)

Dấu '' = '' xảy ra \(\Leftrightarrow\) \(\left\{{}\begin{matrix}a-b=0\\a-c=0\\b-c=0\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}a=b\\a=c\\b=c\end{matrix}\right.\)

\(\Leftrightarrow\) a = b = c

23 tháng 6 2017

a, \(4x+6y-x^2-y^2+2\)

\(=-\left(x^2+y^2-4x-6y-2\right)\)

\(=-\left(x^2-2x-2x+4+y^2-3y-3y+9-15\right)\)

\(=-\left[\left(x^2-2x\right)-\left(2x-4\right)+\left(y^2-3y\right)-\left(3y-9\right)-15\right]\)

\(=-\left[\left(x-2\right)^2+\left(y-3\right)^2-15\right]\)

Với mọi giá trị của \(x;y\in R\) ta có:

\(\left(x-2\right)^2\ge0;\left(y-3\right)^2\ge0\)

\(\Rightarrow\left(x-2\right)^2+\left(y-3\right)^2\ge0\)

\(\Rightarrow\left(x-2\right)^2+\left(y-3\right)^2-15\ge-15\)

\(\Rightarrow-\left[\left(x-2\right)^2+\left(y-3\right)^2-15\right]\le15\)

Để \(-\left[\left(x-2\right)^2+\left(y-3\right)^2-15\right]=15\) thì \(\left(x-2\right)^2+\left(y-3\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x-2\right)^2=0\\\left(y-3\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)

Vậy GTLN của biểu thức là 15 đạt được khi và chỉ khi \(x=2;y=3\)

Câu b làm tương tự! Chúc bạn học tốt!!!

23 tháng 6 2017

Thui đang chán không có bài :) làm lun:

b, \(-x^2-4y^2-z^2+2x+12y-4z-10\)

\(=-\left(x^2+4y^2+z^2-2x-12y+4z+10\right)\)

\(=-\left(x^2-x-x+1+4y^2-6y-6y+9+z^2+2z+2z+4-4\right)\)

\(=-\left[\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2-4\right]\)

Với mọi giá trị của \(x;y;z\in R\) ta có:

\(\left(x-1\right)^2\ge0;\left(2y-3\right)^2\ge0;\left(z+2\right)^2\ge0\)

\(\Rightarrow\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2-4\ge-4\)

\(\Rightarrow-\left[\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2-4\right]\le4\)

với mọi giá trị của \(x;y;z\in R\).

Để \(-\left[\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2-4\right]=4\) thì

\(\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(2y-3\right)^2=0\\\left(z+2\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3}{2}\\x=-2\end{matrix}\right.\)

Vậy .....

Chúc bạn học tốt!!!

25 tháng 2 2018

Phương Ann Nhã Doanh Đinh Đức Hùng Mashiro Shiina

Nguyễn Thanh Hằng Nguyễn Huy Tú Lightning Farron

Akai Haruma Võ Đông Anh Tuấn

mấy anh chị cm cho e thêm cái : \(\dfrac{ay+bx}{c}=\dfrac{bz+cy}{a}=\dfrac{cx+az}{b}\)

31 tháng 3 2017

\(x^2-x+\dfrac{1}{2}=x^2-2\cdot\dfrac{1}{2}x+\dfrac{1}{4}-\dfrac{1}{4}+\dfrac{1}{2}\\ =\left(x^2-2\cdot\dfrac{1}{2}x+\dfrac{1}{4}\right)-\dfrac{1}{4}+\dfrac{1}{2}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\)

ta có: \(\left(x-\dfrac{1}{2}^{ }\right)^2\ge0\forall x\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}>0\forall x\left(vì\dfrac{1}{4}>0\right)\)

hay \(x^2-x+\dfrac{1}{2}>0\forall x\)

19 tháng 11 2017

a, Vì x2 ≥ 0 , 2y2 ≥ 0 với mọi x,y

=>x2+2y2+ 1 ≥ 1

=>Phân thức trên luôn có nghĩa

19 tháng 11 2017

cảm ơn bạn nhoahaha

4 tháng 11 2017

\(\text{a) }\left(\dfrac{1}{2}a^2x^4+\dfrac{4}{3}\:ax^3-\dfrac{2}{3}ax^2\right):\left(-\dfrac{2}{3}\:ax^2\right)\\ =-3ax^2-2x+1\)

\(\text{b) }4\left(\dfrac{3}{4}x-1\right)+\left(12x^2-3x\right):\left(-3x\right)-\left(2x+1\right)\\ =3x-4-4x+1-2x-1\\ =-3x-4\)

4 tháng 11 2017

kết quả cuối cùng là: a. -\(\dfrac{3}{4}ax^2-2x+1\)

b. \(\)-\(3x-4\)

24 tháng 6 2017

sai đề à VT=0; VP#0

24 tháng 6 2017

mk k bt, hình như là đúng mà