√3 là một nghiệm của phương trình x3+ax2+bx+c=0 a,b t...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2016

căn3.A=B ,A,B thuộc Q  => A=B=0

26 tháng 7 2016

=> \(x-\sqrt{3}=0\)

lập phương lên là ra a,b,c

27 tháng 8 2015

Câu 1. Đặt \(x=\sqrt[3]{a},y=\sqrt[3]{b}\to x^3+y^3=2\to2=\left(x+y\right)\left(x^2-xy+y^2\right).\)

\(x^2-xy+y^2=\left(x-\frac{y}{2}\right)^2+\frac{3y^2}{4}>0\) nên suy ra \(x+y>0.\)

Mặt khác ta có \(x^2-xy+y^2=\frac{1}{4}\left(4x^2-4xy+4y^2\right)=\frac{1}{4}\left(x^2+2xy+y^2\right)+\frac{3}{4}\left(x^2-2xy+y^2\right)\)

\(=\frac{\left(x+y\right)^2}{4}+\frac{3\left(x-y\right)^2}{4}\ge\frac{\left(x+y\right)^2}{4}\)

Vậy \(2\ge\left(x+y\right)\cdot\frac{\left(x+y\right)^2}{4}=\frac{\left(x+y\right)^3}{4}\to8\ge\left(x+y\right)^3\to2\ge x+y.\)

14 tháng 1 2018

casio hả. 
thay \(x=1+\sqrt{2}\) vào=> quan hệ a và b
dùng viet
 

3 tháng 6 2018

Để 2 pt \(x^2+ax+bc=0\)(1) 

         và \(x^2+bc+c=0\)  (2)

thì \(\hept{\begin{cases}\Delta_1=a^2-4bc\ge0\\\Delta_2=b^2-4ac\ge0\end{cases}}\)

Gọi 2 nghiệm của pt (1) là \(x_0\)\(x_1\)và 2 nghiệm của pt (2) là \(x_0\)\(x_2\)

( Nghiệm chung là \(x_0\))

Theo Vi-et , ta có :

\(\hept{\begin{cases}x_0+x_1=-a\\x_0.x_1=bc\end{cases}}\)và    \(\hept{\begin{cases}x_0+x_2=-b\\x_0.x_2=ac\end{cases}}\)

Suy ra :

\(\hept{\begin{cases}\left(x_0+x_1\right)-\left(x_0+x_2\right)=\left(-a\right)-\left(-b\right)\\\frac{x_0.x_1}{x_0.x_2}=\frac{bc}{ac}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x_1-x_2=b-a\\\frac{x_1}{x_2}=\frac{b}{a}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x_1=\frac{b}{a}.x_2\\\frac{b}{a}.x_2-x_2=b-a\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x_2.\left(\frac{b}{a}-1\right)=b-a\Leftrightarrow x_2.\frac{b-a}{a}=b-a\\x_1=\frac{b}{a}.x_2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x_2=a\\x_1=b\end{cases}}\)

Vì \(x_1=b\)và  \(x_0.x_1=bc\)nên \(x_0=c\)

Suy ra : \(x_0+x_1=-a\)\(\Leftrightarrow x_1+a=-x_0\)\(\Leftrightarrow x_1+x_2=-c\)

                                                                                   Mà \(x_1.x_2=ab\)

Suy ra : \(x_1\)và \(x_2\)là 2 nghiệm của pt : \(x^2+cx+ab=0\)

21 tháng 4 2020

Gọi x0 là nghiệm chung của 2 phương trình

Ta có:\(x_0^2+ax_0+bc=0;x_0^2+bx_0+ca=0\)

\(\Rightarrow\left(a-b\right)x_0=c\left(a-b\right)\)

Mà \(a\ne b\Rightarrow x_0=c\)

Gọi các nghiệm của phương trình x2 +ax + bc = 0 và x2 + bx + ac = 0 là x1 và x2

Theo Viet ta có:\(x_0x_1=bc;x_0x_2=ca\)

Mà \(x_0=c\ne0\Rightarrow x_1=b;x_2=a\)

Do b;c là các nghiệm của phương trình x2 +ax + bc = 0 nên b+c=-a => -c=a+b => a,b là các nghiệm của phương trình:

x2 - ( a+b ) x + ab = 0 hay x2 + cx + ab = 0

27 tháng 8 2020

Ta có:

\(\Delta_1+\Delta_2+\Delta_3=a^2-4b+b^2-4c+c^2-4a=a^2+b^2+c^2-48\)

Dễ thấy:\(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=48\Rightarrow\Delta_1+\Delta_2+\Delta_3\ge0\)

Khi đó có ít nhất một phương trình có nghiệm

27 tháng 8 2020

còn c/m vô nghiệm thế nào z

15 tháng 8 2016

a) thay x = -3/2 vào pt được : \(\left(-\frac{3}{2}\right)^2-m.\left(-\frac{3}{2}\right)+m+1=0\Leftrightarrow m=-\frac{13}{10}\)

mà theo định lí Vi-et thì : x1+x2=m => x1=m-x2= -13/10+3/2=1/5 (giả sử x2 = -3/2)

b) tương tự

16 tháng 4 2020

Ta có: \(x=\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=4-\sqrt{15}\)

Vì \(x=\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)là nghiệm của phương trình \(ax^2+bx+1=0\)nên:

\(a\left(4-\sqrt{15}\right)^2+b\left(4-\sqrt{15}\right)+1=0\)

\(\Leftrightarrow a\left(31-8\sqrt{15}\right)+4b-\sqrt{15}b+1=0\)

\(\Leftrightarrow31a-8\sqrt{15}a+4b-\sqrt{15}b+1=0\)

\(\Leftrightarrow\sqrt{15}\left(8a+b\right)=31a+4b+1\)

Do a b, là các số hữu tỉ nên \(31a+4b+1\)và \(8a+b\) là các số hữu tỉ

\(\Rightarrow\sqrt{15}\left(8a+b\right)\)là số hữu tỉ

Do đó \(\hept{\begin{cases}8a+b=0\\31a+4b+1=0\end{cases}}\Rightarrow\hept{\begin{cases}a=1\\b=-8\end{cases}}\)

Vậy a = 1; b = -8