Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các phần còn lại check lại đề bài.
b) Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+z}{2+4}=\frac{18}{6}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=3\Rightarrow x=6\\\frac{y}{3}=3\Rightarrow y=9\\\frac{z}{4}=3\Rightarrow z=12\end{cases}}\)
d) Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z+3}{5}=\frac{x+y+z+6}{3+4+5}=\frac{24}{12}=2\)
\(\Rightarrow\hept{\begin{cases}x+1=6\\y+2=8\\z+3=10\end{cases}}\Rightarrow\hept{\begin{cases}x=5\\y=6\\z=7\end{cases}}\)
a ) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)và \(x+z=18\)
Áp dụng t/c dãy tỏ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+z}{2+4}=\frac{18}{6}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=3\\\frac{y}{3}=3\\\frac{z}{4}=3\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=6\\y=9\\z=12\end{cases}}\)
b ) \(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}\) và \(y-x=39\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}=\frac{y-x}{-6-5}=\frac{39}{-11}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{5}=\frac{39}{-11}\\\frac{y}{-6}=\frac{39}{-11}\\\frac{z}{7}=\frac{39}{-11}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{195}{11}\\y=-\frac{234}{11}\\z=\frac{273}{11}\end{cases}}\)
mình chỉ làm 1 phần thui nhé,lười lắm
x/2=y/3=>3x=2y
=>x=15:(3-2).2=30
y=30+15 =45
B2:
a/b=b/c=c/a=a+b+c/b+c+a=1
suy ra a/b=1 suy ra a=b=1(vì hai số bằng nhau mới có tích là 1)
...................................................................................................
với b/c và c/a cũng tương tự như trên và sẽ suy ra a=b=c
1,a)Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{x+y}{7}=\dfrac{14}{7}=2\)
\(=>\left\{{}\begin{matrix}\dfrac{x}{4}=2\\\dfrac{y}{3}=2\end{matrix}\right.=>\left\{{}\begin{matrix}x=8\\y=6\end{matrix}\right.\)
1,b)Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{19}=\dfrac{y}{21}=\dfrac{2x}{38}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)
\(=>\left\{{}\begin{matrix}\dfrac{x}{19}=2\\\dfrac{y}{21}=2\end{matrix}\right.=>\left\{{}\begin{matrix}x=38\\y=42\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=38\\y=42\end{matrix}\right.\)
a) Giải
Vì \(5x=2y\Rightarrow\dfrac{x}{2}=\dfrac{y}{5}\)
Đặt \(\dfrac{x}{2}=\dfrac{y}{5}=k\Rightarrow\left\{{}\begin{matrix}x=2k\\y=5k\end{matrix}\right.\)
Mà \(x-y=-7\)
\(\Rightarrow2k-5k=-7\)
\(\Rightarrow-3k=-7\)
\(\Rightarrow k=\dfrac{7}{3}\)
Vậy \(\left\{{}\begin{matrix}x=2k=2.\dfrac{7}{3}=\dfrac{14}{3}\\y=5k=5.\dfrac{7}{3}=\dfrac{35}{3}\end{matrix}\right.\)
b) Giải
Vì \(5x=7y\Rightarrow\dfrac{x}{7}=\dfrac{y}{5}\)
Đặt \(\dfrac{x}{7}=\dfrac{y}{5}=k\Rightarrow\left\{{}\begin{matrix}x=7k\\y=5k\end{matrix}\right.\)
Mà \(y-x=18\)
\(\Rightarrow5k-7k=18\)
\(\Rightarrow-2k=18\)
\(\Rightarrow k=-9\)
Vậy \(\left\{{}\begin{matrix}x=7k=7.\left(-9\right)=-63\\y=5k=5.\left(-9\right)=-45\end{matrix}\right.\)
c) Giải
Vì \(x:y=3:4\Rightarrow\dfrac{x}{3}=\dfrac{y}{4}\)
Đặt \(\dfrac{x}{3}=\dfrac{y}{4}=k\Rightarrow\left\{{}\begin{matrix}x=3k\\y=4k\end{matrix}\right.\)
Mà \(x+y=-21\)
\(\Rightarrow3k+4k=-21\)
\(\Rightarrow7k=-21\)
\(\Rightarrow k=-3\)
Vậy \(\left\{{}\begin{matrix}x=3k=3.\left(-3\right)=-9\\y=4k=4.\left(-3\right)=-12\end{matrix}\right.\)
d) Giải
Vì \(3x=7y\Rightarrow\dfrac{x}{7}=\dfrac{y}{3}\)
Đặt \(\dfrac{x}{7}=\dfrac{y}{3}=k\Rightarrow\left\{{}\begin{matrix}x=7k\\y=3k\end{matrix}\right.\)
Mà \(x-y=-16\)
\(\Rightarrow7k-3k=-16\)
\(\Rightarrow4k=-16\)
\(\Rightarrow k=-4\)
Vậy \(\left\{{}\begin{matrix}x=7k=7.\left(-4\right)=-28\\y=3k=3.\left(-4\right)=-12\end{matrix}\right.\)