\(\cos x=\frac{1}{3}.\)Khi đó \(\t...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2015

Ta có sin2x + cos2x = 1 => sin2x = 1 - cos2x = 1 - (1/3)2 = 8/9 => sinx = (2can2)/3

=> tanx = sinx/cosx = 2can2

9 tháng 1 2017

Câu 2 đề sai, phải là tìm \(max\) bạn nhé.

Đặt \(a=\sin x,b=\cos x\) thì \(P\left(x\right)=3a+\sqrt{3}b\) với \(a^2+b^2=1\)

(Tư tưởng Cauchy-Schwarz quá rõ)

Ta có \(\left(a^2+b^2\right)\left(9+3\right)\ge\left(3a+\sqrt{3}b\right)^2=P^2\left(x\right)\)

Suy ra \(P\left(x\right)\le2\sqrt{3}\). Đẳng thức xảy ra tại \(x=60\) độ.

Câu 1 để mình suy nghĩ sau.

13 tháng 2 2022

\(tan\alpha=\dfrac{1}{3}\Rightarrow\dfrac{sin\alpha}{cos\alpha}=\dfrac{1}{3}\Rightarrow cos\alpha=3sin\alpha\)

Thay cosa=3sina vào A, được:

\(A=\dfrac{sin^2a+9sin^2a}{sin^2a+9sin^2a+6sin^2a}=\dfrac{10sin^2a}{16sin^2a}=\dfrac{5}{8}\)

23 tháng 9 2018

Ta có:

\(sin^2a+cos^2a=1\Leftrightarrow sin^2a+\left(\frac{1}{3}\right)^2=1\Leftrightarrow sin^2a=\frac{8}{9}\Rightarrow sina=\frac{2\sqrt{2}}{3}.\)

\(B=\frac{sin\alpha-3cosa}{sina+2cosa}=\frac{\frac{2\sqrt{2}}{3}-3.\frac{1}{3}}{\frac{2\sqrt{2}}{3}+2.\frac{1}{3}}=\frac{7-5\sqrt{2}}{2}\)

5 tháng 9 2019

Hỏi đáp Toán

5 tháng 9 2019

anybody help mekhocroi

27 tháng 6 2017

a.Ta có \(\tan\alpha.\cot\alpha=1\Rightarrow\tan\alpha=\frac{1}{\cot\alpha}\)

\(\Rightarrow\frac{1}{\cot\alpha}+\cot\alpha=2\Rightarrow\cot^2\alpha-2\cot\alpha+1=0\)

\(\cot\alpha=1\Rightarrow\alpha=45^0\)

b.Ta có \(\sin^2\alpha+\cos^2\alpha=1\Rightarrow\cos^2\alpha=1-\sin^2\alpha\)

\(\Rightarrow7.\sin^2\alpha+5\left(1-\sin^2\alpha\right)=\frac{13}{2}\)\(\Leftrightarrow\sin^2\alpha=\frac{3}{4}\Leftrightarrow\orbr{\begin{cases}sin\alpha=\frac{\sqrt{3}}{2}\\sin\alpha=\frac{-\sqrt{3}}{2}\end{cases}}\)

\(\Rightarrow\alpha=60^0\)