K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
LN
0
V
0
NK
1
11 tháng 9 2016
x4 - 3x + 2 = (x4 - x3) + (x3 - x2) + (x2 - x) + (-2x + 2)
= (x - 1)(x3 + x2 + x - 2)
AH
Akai Haruma
Giáo viên
12 tháng 7 2023
Lời giải:
Theo định lý Bê-du về phép chia đa thức thì số dư của $f(x)$ chia cho $x-a$ có số dư là $f(a)$.
Áp dụng vào bài:
$f(2)=8a+4b+10=14\Leftrightarrow 2a+b=1(1)$
$f(-1)=-a+b-14=-16\Leftrightarrow -a+b=-2(2)$
Từ $(1); (2)\Rightarrow a=1; b=-1$
TT
1
5 tháng 11 2021
\(A⋮B\Leftrightarrow3x^3-2x^2+ax-a-5=\left(x-2\right)\cdot a\left(x\right)\)
Thay \(x=2\Leftrightarrow3\cdot8-2\cdot4+2a-a-5=0\)
\(\Leftrightarrow24-16-5+a=0\\ \Leftrightarrow a=-3\)
\(x^4-3x+2=\left(x-1\right)\left(x^3+bx^2+ax-2\right)\)
\(\Leftrightarrow x^4-3x+2=x^4+bx^3+ax^2-2x-x^3-bx^2-ax+2\)
\(\Leftrightarrow x^4-3x+2=x^4+\left(b-1\right)x^3+\left(a-b\right)x^2+\left(-2-a\right)x+2\)
\(\Leftrightarrow x^4+0x^3+0x^2-3x+2=x^4+\left(b-1\right)x^3+\left(a-b\right)x^2+\left(-2-a\right)x+2\)
Ta có: \(\left\{{}\begin{matrix}b-1=0\\a-b=0\\-2-a=-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=1\\a=b\\a=1\end{matrix}\right.\)
\(\Leftrightarrow a=b=1\)
Vậy: ...