K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2020

Mong các bạn tìm thêm điều kiện giúp mình ạ. :((

26 tháng 1 2022

gọi số lớn là x số nhỏ là y(2014>x>y>0)

ta có x+y=2014 và x=y+14<=>x-y=14

ta được bài toán tìm ẩn biết tổng và hiệu của chúng 

=>x=(2014+14):2=1014(nhận)

=>y=2014-1014=1000(nhận)

vậy 2 số đó là 1014 và 1000

 

HQ
Hà Quang Minh
Giáo viên
2 tháng 8 2023

Gọi số lớn là a, số bé là b

Theo đề bài ta có:

\(\left\{{}\begin{matrix}a+b=2024\\a-b=16\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=1020\\b=1004\end{matrix}\right.\)

Vậy hai số tự nhiên đó là 1020 và 1004.

2 tháng 8 2023

Gọi hai số đó là: \(a,b\) 

Tổng của hai số là 2024: \(a+b=2024\)(1)

Hiệu của hai số là 16: \(a-b=16\) (2)

Từ (1) và (2) ta có hệ:

\(\left\{{}\begin{matrix}a+b=2024\\a-b=16\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=2024\\2a=2040\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=2024\\a=\dfrac{2040}{2}=1020\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}1020+b=2024\\a=1020\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=2024-1020=1004\\a=1020\end{matrix}\right.\)

Vậy: ..

10 tháng 12 2023

Bài 1:

Gọi hai số tự nhiên cần tìm là a,b

Số thứ nhất gấp 4 lần số thứ hai nên a=4b(1)

Tổng của hai số là 100 nên a+b=100(2)

Từ (1) và (2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}a=4b\\a+b=100\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4b+b=100\\a=4b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5b=100\\a=4b\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}b=\dfrac{100}{5}=20\\a=4\cdot20=80\end{matrix}\right.\)

Bài 2:

Gọi hai số cần tìm là a,b

Hiệu của hai số là 10 nên a-b=10(4)

Hai lần số thứ nhất bằng ba lần số thứ hai nên 2a=3b(3)

Từ (3) và (4) ta có hệ phương trình:

\(\left\{{}\begin{matrix}a-b=10\\2a=3b\end{matrix}\right.\Leftrightarrow\)\(\left\{{}\begin{matrix}a-b=10\\2a-3b=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2a-2b=20\\2a-3b=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2a-2b-2a+3b=20\\2a=3b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=20\\2a=3\cdot20=60\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}a=30\\b=20\end{matrix}\right.\)

Bài 3:

Gọi số tự nhiên cần tìm có dạng là \(\overline{ab}\left(a\ne0\right)\)

Chữ số hàng chục bé hơn chữ số hàng đơn vị là 3 nên b-a=3(5)

Nếu đổi chỗ hai chữ số cho nhau thì tổng của số mới lập ra và số ban đầu là 77 nên ta có:

\(\overline{ab}+\overline{ba}=77\)

=>\(10a+b+10b+a=77\)

=>11a+11b=77

=>a+b=7(6)

Từ (5) và (6) ta có hệ phương trình:

\(\left\{{}\begin{matrix}-a+b=5\\a+b=7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-a+b+a+b=5+7\\a+b=7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2b=12\\a+b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=6\\a=7-6=1\end{matrix}\right.\)

Vậy: Số tự nhiên cần tìm là 16

Gọi hai số cần tìm là a,b

Theo đề, ta có:

a+b=1006 và a=2b+124

=>a+b=1006 và a-2b=124

=>a=712 và b=294

a) Gọi 2 số đó là x và y. (0<x,y<33)

Tổng 2 số là 33: x+y=33 (1)

Tích 2 số là 270: x.y=270 (2)

Từ (1),(2) ta có hpt: 

\(\left\{{}\begin{matrix}x+y=33\\x.y=270\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=33-y\\\left(33-y\right).y=270\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=33-y\\-y^2+33y-270=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=33-y\\\left[{}\begin{matrix}y=18\\y=15\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=18\\x=33-18=15\end{matrix}\right.\\\left\{{}\begin{matrix}y=15\\x=33-15=18\end{matrix}\right.\end{matrix}\right.\)

Vậy: Hai số cần tìm là 18 và 15.

13 tháng 6 2017

Gọi số lớn là x, số nhỏ là y (x, y ∈ N*); x,y > 124.

Tổng hai số bằng 1006 nên ta có: x + y = 1006

Số lớn chia số nhỏ được thương là 2, số dư là 124 nên ta có: x = 2y + 124.

Ta có hệ phương trình:

Giải bài 28 trang 22 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy hai số tự nhiên phải tìm là 712 và 294.

Chú ý : Số bị chia = số chia. thương + số dư

19 tháng 10 2017

Gọi số lớn là x, số nhỏ là y (x, y ∈ N*); x,y > 124.

Tổng hai số bằng 1006 nên ta có: x + y = 1006

Số lớn chia số nhỏ được thương là 2, số dư là 124 nên ta có: x = 2y + 124.

Ta có hệ phương trình:

Giải bài 28 trang 22 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy hai số tự nhiên phải tìm là 712 và 294.

Chú ý : Số bị chia = số chia. thương + số dư

Kiến thức áp dụng

Giải bài toán bằng cách lập hệ phương trình:

Bước 1: Lập hệ phương trình

- Chọn các ẩn số và đặt điều kiện thích hợp

- Biểu diễn các đại lượng chưa biết và đã biết theo ẩn

- Lập các phương trình biểu thị mối quan hệ giữa các đại lượng theo đề bài.

- Từ các phương trình vừa lập rút ra được hệ phương trình.

Bước 2: Giải hệ phương trình (thường sử dụng phương pháp thế hoặc cộng đại số).

Bước 3: Đối chiếu nghiệm với điều kiện và kết luận.

14 tháng 8 2021

1. ta có abc + deg = 560

abc : deg = 3 dư 68 

(1 + 3) x deg = 560- 68 = 492

deg = 492 : 4 = 123

abc là : 123 x 3 + 68 = 437

2. ta có :

ab + ba = 99

ba - ab = 27

ba = ( 99 + 27) : 2 = 63

ab = 99 - 63 = 36

HT

14 tháng 8 2021

bạn tribinh lm kiểu j thế ?????

2 tháng 2 2019

Gọi x là số lớn, y là số bé. ĐK : x>y và 0<x,y<1006 
Vì tổng của 2 số này bằng 1006 nên : x+y=1006 (*) 
Mà nếu lấy số lớn chia cho số nhỏ thì đc thương là 2 và số dư là 124 nên ta có: x= 2y + 124 . 
Thay vào (*) ta đc: y+2y+124 =1006<=>3y = 882=>y=882/3 = 294 
=>x=1006-294 =712 
Vậy....................

Gọi số lớn là x , số nhỏ là y ( x , y ∈ N* ) ; x > 124.

Vì tổng hai số bằng 1006 nên ta có: x + y = 1006 . 

Số lớn chia số nhỏ được thương là 2, số dư là 124 nên ta có: x = 2y + 124.

Ta có hệ phương trình:

Giải bài 28 trang 22 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy ..........