Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\tan\alpha.\cot\alpha=1\); \(1+\tan^2\alpha=\frac{1}{\cos^2\alpha}\); \(\tan\alpha=\frac{\sin\alpha}{\cos\alpha}\)
\(\cot\alpha=\frac{1}{\tan\alpha}=\frac{4}{3}\); \(\frac{1}{\cos^2\alpha}=\frac{25}{16}\Rightarrow\cos\alpha=\frac{4}{5}\); \(\sin\alpha=\tan\alpha.\cos\alpha=\frac{3}{5}\)
a)\(\sin\alpha=\dfrac{9}{15}\Rightarrow\sin^2\alpha=\dfrac{81}{225}\)
Có: \(\sin^2\alpha+\cos^2\alpha=1\)
\(\Rightarrow\cos^2\alpha=1-\sin^2\alpha=1-\dfrac{81}{225}=\dfrac{144}{225}\)
\(\Rightarrow\cos\alpha=\sqrt{\dfrac{144}{225}}=\dfrac{12}{15}=\dfrac{4}{5}\)
\(\Rightarrow\tan\alpha=\dfrac{\sin\alpha}{\cos\alpha}=\dfrac{9}{15}:\dfrac{4}{5}=\dfrac{3}{4}\)
\(\cot\alpha=\dfrac{\cos\alpha}{\tan\alpha}=\dfrac{4}{5}:\dfrac{9}{15}=\dfrac{4}{3}\)
b)\(\cos\alpha=\dfrac{3}{5}\Rightarrow\cos^2\alpha=\dfrac{9}{25}\)
Có: \(\sin^2\alpha+\cos^2\alpha=1\)
\(\Rightarrow\sin^2\alpha=1-\cos^2\alpha=1-\dfrac{9}{25}=\dfrac{16}{25}\)
\(\Rightarrow\sin\alpha=\dfrac{4}{5}\)
\(\Rightarrow\tan\alpha=\dfrac{\sin\alpha}{\cos\alpha}=\dfrac{4}{5}:\dfrac{3}{5}=\dfrac{4}{3}\)
\(\cot\alpha=\dfrac{\cos\alpha}{\sin\alpha}=\dfrac{3}{5}:\dfrac{4}{5}=\dfrac{3}{4}\)
\(\sin\alpha+\cos\alpha=m\Leftrightarrow\left(\sin\alpha+\cos\alpha\right)^2=m^2\)
\(\sin^2\alpha+\cos^2\alpha+2\sin\alpha\cdot\cos\alpha=m^2\)
\(\Leftrightarrow2\sin\alpha\cdot\cos\alpha=m^2-1\)
\(\Leftrightarrow\sin\alpha\cdot\cos\alpha=\frac{m^2-1}{2}\)