Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{\sqrt{1+x^3+y^3}}{xy}>=\sqrt{\dfrac{3}{xy}}\)
\(\dfrac{\sqrt{1+y^3+z^3}}{yz}>=\sqrt{\dfrac{3}{yz}}\)
\(\dfrac{\sqrt{1+z^3+x^3}}{xz}>=\sqrt{\dfrac{3}{xz}}\)
=>\(VT>=\sqrt{3}\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\right)=3\sqrt{3}\)
Ta có : \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\ge xy\left(x+y\right)\)
\(\Rightarrow1+x^3+y^3\ge xyz+xy\left(x+y\right)=xy\left(x+y+z\right)\ge3xy\sqrt[3]{xyz}=3xy\)
\(\frac{\sqrt{1+x^3+y^3}}{xy}\ge\frac{\sqrt{3xy}}{xy}=\sqrt{\frac{3}{xy}}\)
Tương tự : \(\frac{\sqrt{1+y^3+z^3}}{yz}\ge\frac{\sqrt{3yz}}{yz}=\sqrt{\frac{3}{yz}}\); \(\frac{\sqrt{1+x^3+z^3}}{xz}\ge\frac{\sqrt{3xz}}{xz}=\sqrt{\frac{3}{xz}}\)
\(\Rightarrow A\ge\sqrt{3}\left(\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{xz}}\right)\ge3\sqrt{3}\sqrt{\frac{1}{\sqrt{x^2y^2z^2}}}=3\sqrt{3}\)
Ta có: \(x^3+y^3\ge xy\left(x+y\right)\Rightarrow1+x^3+y^3\ge xyz+xy\left(x+y\right)\)
\(=xy\left(x+y+z\right)\ge3xy\sqrt[3]{xyz}=3xy\)(vì xyz = 1)
\(\Rightarrow\frac{\sqrt{1+x^3+y^3}}{xy}=\frac{\sqrt{3xy}}{xy}=\sqrt{\frac{3}{xy}}\)
Tương tự ta có: \(\frac{\sqrt{1+y^3+z^3}}{yz}=\sqrt{\frac{3}{yz}}\);\(\frac{\sqrt{1+z^3+x^3}}{zx}=\sqrt{\frac{3}{zx}}\)
Cộng vế với vế, ta được:
\(BĐT=\sqrt{3}\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}\right)\)
\(\ge3\sqrt{3}\sqrt[3]{\frac{1}{\sqrt{x^2y^2z^2}}}=3\sqrt{3}\)
(Dấu "="\(\Leftrightarrow x=y=z=1\))
Giả thiết thiếu rồi em, chỗ \(\dfrac{1}{x+1}+...\) thiếu đoạn sau nữa
Đặt \(\left(\dfrac{1}{\sqrt{x}};\dfrac{1}{\sqrt{y}};\dfrac{1}{\sqrt{z}}\right)=\left(a;b;c\right)\Rightarrow\dfrac{a^2}{a^2+1}+\dfrac{b^2}{b^2+1}+\dfrac{c^2}{c^2+1}=1\)
Ta cần chứng minh: \(ab+bc+ca\le\dfrac{3}{2}\)
Thật vậy, ta có:
\(1=\dfrac{a^2}{a^2+1}+\dfrac{b^2}{b^2+1}+\dfrac{c^2}{c^2+1}\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+3}\)
\(\Rightarrow a^2+b^2+c^2+3\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(\Rightarrow ab+bc+ca\le\dfrac{3}{2}\) (đpcm)
BĐT cần chứng minh tương đương với
\(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\le\dfrac{3}{2}\)
Đặt\(x=\dfrac{b+c}{a};y=\dfrac{c+a}{b};z=\dfrac{a+b}{c}\)
Khi đó áp dụng BĐT Cauchy-Schwarz ta có:
\(\dfrac{1}{\sqrt{xy}}=\sqrt{\dfrac{ab}{\left(a+c\right)\left(b+c\right)}}\le\dfrac{1}{2}\left(\dfrac{a}{a+c}+\dfrac{b}{b+c}\right)\)
Tương tự cho 2 BĐT còn lại rồi cộng vào có:
\(Σ\dfrac{1}{\sqrt{xy}}\le\dfrac{1}{2}\left(\dfrac{a+c}{a+c}+\dfrac{b+c}{b+c}+\dfrac{a+b}{a+b}\right)=\dfrac{3}{2}\)
Đẳng thức xảy ra khi \(x=y=z=2\)
Đặt: \(\hept{\begin{cases}\sqrt[3]{x}=a\\\sqrt[3]{y}=b\\\sqrt[3]{z}=c\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y+z=a^3+b^3+c^3\\3\sqrt[3]{xyz}=3abc\end{cases}}\) Theo hđt mở rộng: \(a^3+b^3+c^3=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)+3abc\)
\(=\left(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}\right)\left(a^2+b^2+c^2-ab-ac-bc\right)+3abc=3abc\)
Vậy \(a^3+b^3+c^3=3abc\Leftrightarrow x+y+z=3\sqrt[3]{xyz}\)
Ta có : \(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}=0\)
\(\Leftrightarrow\sqrt[3]{x}+\sqrt[3]{y}=-\sqrt[3]{z}\)
\(\Leftrightarrow\left(\sqrt[3]{x}+\sqrt[3]{y}\right)^3=-z\)(1)
\(\Leftrightarrow x+y+3\sqrt[3]{x}^2\sqrt[3]{y}+3\sqrt[3]{x}.\sqrt[3]{y}^2=-z\)
\(\Leftrightarrow x+y+3\sqrt[3]{x}\sqrt[3]{y}\left(\sqrt[3]{x}+\sqrt[3]{y}\right)=-z\)
\(\Leftrightarrow x+y-3\sqrt[3]{x}\sqrt[3]{y}\sqrt[3]{z}=-z\left(theo\left(1\right)\right)\)
\(\Leftrightarrow x+y-3\sqrt[3]{xyz}=-z\)
\(\Leftrightarrow x+y+z=3\sqrt[3]{xyz}\)