K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đề: Chứng minh \(a^2\) chia 5 dư 1

Ta có: a chia 5 dư 4

\(a=5k+4\)(k∈N)

\(a^2=\left(5k+4\right)^2=25k^2+40k+16\)

\(\Leftrightarrow a^2=25k^2+40k+15+1\)

\(\Leftrightarrow a^2=5\left(5k^2+8k+3\right)+1\)

hay \(a^2\) chia 5 dư 1(đpcm)

9 tháng 7 2016

a chia 5 dư 4 thì a có dạng: 5k+4

\(=>a^2=\left(5k+4\right)^2=\left(5k\right)^2+2.5k.4+4^2=25k^2+40k+16\)

\(=5\left(5k^2+8k+3\right)+1\) chia 5 dư 1 (vì 5(5k2+8k+3) chia hết cho 5)

Vậy................

26 tháng 7 2016

a chia 5 dư 4  =>  a = 5k + 4

\(\Rightarrow a^2=\left(5k+4\right)^2=25k^2+40k+16=5k\left(5k+8\right)+16\)

5k (5k + 8) chia hết cho 8  => tận cùng = 0 hoặc = 5  => 5k (5k + 8) + 16 tận cùng 1 hoặc 6

=> a^2 chia 5 dư 1

a chia 5 dư 4=>a=5k+4

=>a2=(5k+4)(5k+4)

=(5k+4)5k+4(5k+4)

=(5k+4)5k+5.4k+3.5+1 chia 5 dư 1

=>đpcm

16 tháng 7 2018

Tại sao là a^2=(5k+4)*(5k+4)

Vì sao là ra cái đó bạn

11 tháng 9 2018

Ta co:

\(a=5n+4\)

\(\Rightarrow a^2=\left(5n+4\right)^2=25n^2+40n+16\)

cai này chia 5 dư 1

11 tháng 9 2018

Theo đề, a chia 5 dư 4 => a = 5k + 4 (k thuộc N)

Vì hai số đều là các số tự nhiên

Bình phương hai vế ta được: a2 = (5k + 4)2 = (5k)2+2.5k.4+42 =  25k2 + 40k + 16

Vì 25k2 chia hết cho 5

     40k chia hết cho 5

Mà 16 chia 5 dư 1

Vậy 25k2 + 40k + 16 chia 5 dư 1

=> ĐPCM

23 tháng 7 2017

Đặt thương của a chia 5 là x 

=> Số a là: 5x + 4

=> \(a^2\)=\(\left(5x+4\right)^2\)=\(25x^2+40x+16\)

Vì \(25x^2\)chia hết cho 5 ( 25 chia hết cho 5 )

\(40x\)chia hết cho 5 ( 40 chia hết cho 5 ) => \(25x^2+40x\)chia hết cho 5 

\(16\)chia 5 dư 1

=> \(25x^2+40x+16\)chia 5 dư 1 

Vậy \(a^2\)chia 5 dư 1

23 tháng 7 2017

a chia 5 dư 4 => a = 5k + 4 [k ∈ N]

=> a2 = [5k + 4]2 = 25k2 + 40k + 16 = 25k2 + 40k + 15  + 1 =- 5[5k2 + 8k + 3] + 1 chia 5 dư 1 => ĐPCM

15 tháng 9 2019

Vì a chia cho 5 dư 4

\(\Rightarrow a=-1\left(mod5\right)\)

\(\Rightarrow a^2=1\left(mod5\right)\)

Vậy \(a^2\)chia cho 5 dư 1( đpcm)

15 tháng 9 2019

Ta có: \(a\equiv\left(-1\right)\left(mod5\right)\)

\(\Rightarrow a^2\equiv\left(-1\right)^2\left(mod5\right)\)

\(\Rightarrow a^2\equiv1\left(mod5\right)\)

\(\Rightarrow\)\(a^5\div5\)dư 1 \(\left(đpcm\right)\)

21 tháng 7 2017

Vì số tự nhiên a chia cho 5 dư 4 nên a có dạng \(a=5k+4\)

Ta có \(a^2=\left(5k+4\right)^2=25k^2+40k+16=5\left(5k^2+8k+3\right)+1\)

Ta thấy \(5\left(5k^2+8k+1\right)⋮5\forall k\)

\(\Rightarrow\left[5\left(5k^2+8k+1\right)+1\right]⋮5\)dư 1

Vậy \(a^2\)chia cho 5 dư 1

24 tháng 6 2016

đặt a=5k+4

=>a^2=(5k+4)^2

=25k^2+10k+16

vì 25k^2 và 10k chia hết cho 5,16 chia 5 dư 1

=>a^2 chia 5 dư 1