Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(a+\frac{1}{36a}=x\)
pt đã cho trở thành \(9x^2-6x+1=0\)
\(\Leftrightarrow9\left(x^2-\frac{2}{3}x+\frac{1}{9}\right)=0\)
\(\Leftrightarrow9\left(x-\frac{1}{3}\right)^2=0\)
\(\Leftrightarrow x-\frac{1}{3}=0\)
\(\Leftrightarrow x=\frac{1}{3}=a+\frac{1}{36a}=\frac{36a^2+1}{36a}\)
\(\Leftrightarrow12a=36a^2+1\)
\(\Leftrightarrow36a^2-12a+1=0\)
\(\Leftrightarrow\left(6a-1\right)^2=0\)
\(\Leftrightarrow6a-1=0\)
\(\Leftrightarrow a=\frac{1}{6}\Rightarrow a=6\)
Chúc bạn học tốt !!!
Đặt \(t=a+\frac{1}{36a}\)
Ta có : \(9t^2-6t+1=0\)
\(\Leftrightarrow\left(3t-1\right)^2=0\)\(\Leftrightarrow t=\frac{1}{3}\)
\(\Leftrightarrow a+\frac{1}{36a}=\frac{1}{3}\)
\(\Leftrightarrow\frac{36a^2+1}{36a}=\frac{1}{3}\)
\(\Leftrightarrow36a^2+1=12a\)
\(\Leftrightarrow36a^2-12a+1=0\)
\(\left(6a-1\right)^2=0\)
\(\Rightarrow a=\frac{1}{6}\)
\(\Rightarrow\frac{1}{a}=6\)
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\left(ab+bc+ca\right)\left(a+b+c\right)=abc\)
\(\Leftrightarrow a^2b+ab^2+c^2a+ca^2+b^2c+bc^2+2abc=0\)
\(\Leftrightarrow\left(a^2+2ab+b^2\right)c+ab\left(a+b\right)+c^2\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca+c^2\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
=> Hoặc a+b=0 hoặc b+c=0 hoặc c+a=0
=> Hoặc a=-b hoặc b=-c hoặc c=-a
Ko mất tổng quát, g/s a=-b
a) Ta có: vì a=-b thay vào ta được:
\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=-\frac{1}{b^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{c^3}\)
\(\frac{1}{a^3+b^3+c^3}=\frac{1}{-b^3+b^3+c^3}=\frac{1}{c^3}\)
=> đpcm
b) Ta có: \(a+b+c=1\Leftrightarrow-b+b+c=1\Rightarrow c=1\)
=> \(P=-\frac{1}{b^{2021}}+\frac{1}{b^{2021}}+\frac{1}{c^{2021}}=\frac{1}{1^{2021}}=1\)
Từ \(x\left(\dfrac{1}{y}+\dfrac{1}{z}\right)+y\left(\dfrac{1}{z}+\dfrac{1}{x}\right)+z\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=-2\) ta có:
\(x^2y+y^2z+z^2x+xy^2+yz^2+zx^2+2xyz=0\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\\y+z=0\\z+x=0\end{matrix}\right.\).
Không mất tính tổng quát, giả sử x + y = 0
\(\Leftrightarrow x=-y\)
\(\Leftrightarrow x^3=-y^3\).
Kết hợp với \(x^3+y^3+z^3=1\) ta có \(z^3=1\Leftrightarrow z=1\).
Vậy \(P=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{-y}+\dfrac{1}{y}+\dfrac{1}{1}=1\).
Theo nguyên lý Dirichlet, trong 3 số a;b;c luôn có ít nhất 2 số cùng phía so với 1
Không mất tính tổng quát, giả sử đó là a và b
\(\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\)
\(\Leftrightarrow ab+1\ge a+b\)
\(\Leftrightarrow2\left(ab+1\right)\ge\left(a+1\right)\left(b+1\right)\)
\(\Rightarrow\dfrac{2}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge\dfrac{2}{2\left(ab+1\right)\left(c+1\right)}=\dfrac{1}{\left(ab+1\right)\left(c+1\right)}=\dfrac{1}{\left(\dfrac{1}{c}+1\right)\left(c+1\right)}=\dfrac{c}{\left(c+1\right)^2}\)
Lại có:
\(\dfrac{1}{\left(\sqrt{ab}.\sqrt{\dfrac{a}{b}}+1.1\right)^2}+\dfrac{1}{\left(\sqrt{ab}.\sqrt{\dfrac{b}{a}}+1\right)^2}\ge\dfrac{1}{\left(ab+1\right)\left(\dfrac{a}{b}+1\right)}+\dfrac{1}{\left(ab+1\right)\left(\dfrac{b}{a}+1\right)}=\dfrac{1}{ab+1}\)
\(\Rightarrow P\ge\dfrac{1}{ab+1}+\dfrac{1}{\left(c+1\right)^2}+\dfrac{c}{\left(c+1\right)^2}=\dfrac{1}{\dfrac{1}{c}+1}+\dfrac{1}{\left(c+1\right)^2}+\dfrac{c}{\left(c+1\right)^2}\)
\(\Rightarrow P\ge\dfrac{c}{c+1}+\dfrac{c+1}{\left(c+1\right)^2}=\dfrac{c\left(c+1\right)+c+1}{\left(c+1\right)^2}=\dfrac{\left(c+1\right)^2}{\left(c+1\right)^2}=1\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)
Ta có : \(\left(a+\dfrac{1}{a}\right)\left(b+\dfrac{1}{b}\right)=ab+\dfrac{1}{ab}+\dfrac{a}{b}+\dfrac{b}{a}\)
\(=\left(ab+\dfrac{1}{16ab}\right)+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\dfrac{15}{16ab}\)
Áp dụng BĐT Cô - si có
\(ab+\dfrac{1}{16ab}\ge2\sqrt{ab\cdot\dfrac{1}{16ab}}=\dfrac{1}{2}\)
\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\)
Có : \(1=a+b\ge2\sqrt{ab}\Rightarrow ab\le\dfrac{1}{4}\Rightarrow16ab\le4\Rightarrow\dfrac{15}{16ab}\ge\dfrac{15}{4}\)
Do đó \(\left(a+\dfrac{1}{a}\right)\left(b+\dfrac{1}{b}\right)\ge2+\dfrac{1}{2}+\dfrac{15}{4}=\dfrac{25}{4}\)
Dấu "=" xảy ra khi \(a=b=\dfrac{1}{2}\)
Bài này đã có ở đây:
Cho abc=1CMR\(\dfrac{a+3}{\left(a+1\right)^2}+\dfrac{b+3}{\left(b+1\right)^2}+\dfrac{c+3}{\left(c+1\right)^2}\ge3\) - Hoc24
Đặt \(a+\dfrac{1}{36a}=x\)
pt đã cho trở thành 9x2 - 6x + 1 = 0
\(\Leftrightarrow9\left(x^2-\dfrac{2}{3}x+\dfrac{1}{9}\right)=0\)
\(\Leftrightarrow9\left(x-\dfrac{1}{3}\right)^2=0\)
\(\Leftrightarrow x-\dfrac{1}{3}=0\)
\(\Leftrightarrow x=\dfrac{1}{3}=a+\dfrac{1}{36a}=\dfrac{36a^2+1}{36a}\)
\(\Leftrightarrow12a=36a^2+1\)
\(\Leftrightarrow36a^2-12a+1=0\)
\(\Leftrightarrow\left(6a-1\right)^2=0\)
\(\Leftrightarrow6a-1=0\)
\(\Leftrightarrow a=\dfrac{1}{6}\) \(\Rightarrow a=6\)
6