Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1+tan^2a=1+\frac{sin^2a}{cos^2a}=\frac{cos^2a+sin^2a}{cos^2a}=\frac{1}{cos^2a}\)
\(1+cot^2a=1+\frac{cos^2a}{sin^2a}=\frac{sin^2a+cos^2a}{sin^2a}=\frac{1}{sin^2a}\)
\(cot^2a-cos^2a=\frac{cos^2a}{sin^2a}-cos^2a=cos^2a\left(\frac{1}{sin^2a}-1\right)=cos^2a\left(\frac{1-sin^2a}{sin^2a}\right)\)
\(=cos^2a\left(\frac{cos^2a}{sin^2a}\right)=cos^2a.cot^2a\)
\(\frac{1+cosa}{sina}=\frac{sina\left(1+cosa\right)}{sin^2a}=\frac{sina\left(1+cosa\right)}{1-cos^2a}=\frac{sina\left(1+cosa\right)}{\left(1-cosa\right)\left(1+cosa\right)}=\frac{sina}{1-cosa}\)
1. \(\frac{cos\alpha+sin\alpha}{cos\alpha-sin\alpha}=\frac{1+\frac{sin\alpha}{cos\alpha}}{1-\frac{sin\alpha}{cos\alpha}}=\frac{1+\frac{1}{2}}{1-\frac{1}{2}}=3\)
2. \(cos\beta=2sin\beta\Rightarrow cos^2\beta=4sin^2\beta\). Do \(cos^2\beta+sin^2\beta=1\Rightarrow5sin^2\beta=1\Rightarrow sin\beta=\frac{1}{\sqrt{5}}\)
\(\Rightarrow cos\beta=\frac{2}{\sqrt{5}}\). Vậy \(sin\beta.cos\beta=\frac{2}{5}\)
3. a. Nhân chéo ra được hệ thức \(sin^2\alpha+cos^2\alpha=1\)
b. Chú ý \(cot^2\alpha=\frac{cos^2\alpha}{sin^2\alpha}\)
\(1+tan^2a=1+\frac{sin^2a}{cos^2a}=\frac{cos^2a+sin^2a}{cos^2a}=\frac{1}{cos^2a}\)
\(1+cot^2a=1+\frac{cos^2a}{sin^2a}=\frac{sin^2a+cos^2a}{sin^2a}=\frac{1}{sin^2a}\)
\(cot^2a-cos^2a=\frac{cos^2a}{sin^2a}-cos^2a=cos^2a\left(\frac{1}{sin^2a}-1\right)=cos^2a\left(\frac{1-sin^2a}{sin^2a}\right)\)
\(=cos^2a.\frac{cos^2a}{sin^2a}=cos^2a.cot^2a\)
Câu cuối đề bài sai
\(\cot\alpha=\frac{\cos\alpha}{\sin\alpha}=\sqrt{5}\Rightarrow\frac{\cos\alpha}{\sqrt{5}}=\frac{\sin\alpha}{1}\)
Đặt \(\frac{\cos\alpha}{\sqrt{5}}=\frac{\sin\alpha}{1}=k\)thì \(\cos\alpha=\sqrt{5}k,\sin\alpha=k\)
Vậy \(A=\frac{\sin^2a+\cos^2\alpha}{\sin\alpha.\cos\alpha}=\frac{k^2+5k^2}{\sqrt{5}k.k}=\frac{6}{\sqrt{5}}\)