K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 2 2020

\(0< 15^0< 90^0\Rightarrow sin,cos,tan\) đều dương

\(cos15=\sqrt{1-sin^215}=\sqrt{1-\left(\frac{\sqrt{6}-\sqrt{2}}{4}\right)^2}=\frac{\sqrt{6}+\sqrt{2}}{4}\)

\(tan15=\frac{sin15}{cos15}=2+\sqrt{3}\)

\(cot15=\frac{1}{tan15}=2-\sqrt{3}\)

22 tháng 8 2022

sao cos bình 15 lại = căn 1- sin bình 15 ạ

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) \({4^6}.\sqrt {0,1}  = 1295,2689\)

b) \(\sqrt[8]{{2,{1^{18}} + 1}} - \sqrt {2,{1^{12}} + 1}  =  - 80,4632\)

c) \(\frac{{1,{5^3}}}{{\sqrt[3]{{6,8}}}} = 1,7814\)

NV
27 tháng 10 2019

a/ ĐKXĐ: ...

\(\Leftrightarrow3\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)=2\left(x+\frac{1}{4x}\right)-7\)

Đặt \(\sqrt{x}+\frac{1}{2\sqrt{x}}=a>0\Rightarrow a^2=x+\frac{1}{4x}+1\)

\(\Rightarrow x+\frac{1}{4x}=a^2-1\)

Pt trở thành:

\(3a=2\left(a^2-1\right)-7\)

\(\Leftrightarrow2a^2-3a-9=9\Rightarrow\left[{}\begin{matrix}a=3\\a=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x}+\frac{1}{2\sqrt{x}}=3\)

\(\Leftrightarrow2x-6\sqrt{x}+1=0\)

\(\Rightarrow\sqrt{x}=\frac{3+\sqrt{7}}{2}\Rightarrow x=\frac{8+3\sqrt{7}}{2}\)

b/ ĐKXĐ:

\(\Leftrightarrow5\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)=2\left(x+\frac{1}{4x}\right)+4\)

Đặt \(\sqrt{x}+\frac{1}{2\sqrt{x}}=a>0\Rightarrow x+\frac{1}{4x}=a^2-1\)

\(\Rightarrow5a=2\left(a^2-1\right)+4\Leftrightarrow2a^2-5a+2=0\)

\(\Rightarrow\left[{}\begin{matrix}a=2\\a=\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt{x}+\frac{1}{2\sqrt{x}}=2\\\sqrt{x}+\frac{1}{2\sqrt{x}}=\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x-4\sqrt{x}+1=0\\2x-\sqrt{x}+1=0\left(vn\right)\end{matrix}\right.\)

NV
27 tháng 10 2019

c/ ĐKXĐ: ...

\(\Leftrightarrow\sqrt{2x^2+8x+5}-4\sqrt{x}+\sqrt{2x^2-4x+5}-2\sqrt{x}=0\)

\(\Leftrightarrow\frac{2x^2-8x+5}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\frac{2x^2-8x+5}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)

\(\Leftrightarrow\left(2x^2-8x+5\right)\left(\frac{1}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\frac{1}{\sqrt{2x^2-4x+5}+2\sqrt{x}}\right)=0\)

\(\Leftrightarrow2x^2-8x+5=0\)

d/ ĐKXĐ: ...

\(\Leftrightarrow x+1-\frac{15}{6}\sqrt{x}+\sqrt{x^2-4x+1}-\frac{1}{2}\sqrt{x}=0\)

\(\Leftrightarrow\frac{x^2-\frac{17}{4}x+1}{\left(x+1\right)^2+\frac{15}{6}\sqrt{x}}+\frac{x^2-\frac{17}{4}x+1}{\sqrt{x^2-4x+1}+\frac{1}{2}\sqrt{x}}=0\)

\(\Leftrightarrow\left(x^2-\frac{17}{4}x+1\right)\left(\frac{1}{\left(x+1\right)^2+\frac{15}{6}\sqrt{x}}+\frac{1}{\sqrt{x^2-4x+1}+\frac{1}{2}\sqrt{x}}\right)=0\)

\(\Leftrightarrow x^2-\frac{17}{4}x+1=0\)

\(\Leftrightarrow4x^2-17x+4=0\)

4 tháng 12 2019

1.

ĐK: \(-1\le x\le4\)

Đặt \(\sqrt{x+1}+\sqrt{4-x}=t\left(t\ge0\right)\)

\(\Leftrightarrow\sqrt{\left(x+1\right)\left(4-x\right)}=\frac{t^2-5}{2}\)

\(PT\Leftrightarrow t+\frac{t^2-5}{2}=5\Rightarrow t^2+2t-15=0\) \(\Rightarrow\left[{}\begin{matrix}t=3\\t=-5\left(l\right)\end{matrix}\right.\)

\(t=3\Rightarrow\sqrt{-x^2+3x+4}=2\) \(\Leftrightarrow-x^2+3x+4=4\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\) (tm)

2.

ĐK:\(x\ge4\)

Đặt \(\sqrt{x+4}+\sqrt{x-4}=t\left(t\ge0\right)\)

\(\Rightarrow2\sqrt{x^2-16}=t^2-2x\)

\(PT\Leftrightarrow t=2x-12+t^2-2x\)

\(\Leftrightarrow t^2-t-12=0\Rightarrow\left[{}\begin{matrix}t=4\\t=-3\left(l\right)\end{matrix}\right.\) Giải tiếp như trên.

5 tháng 12 2019

@tran duc huy Bình phương rồi chuyển vế nha.

10 tháng 10 2019

undefinedundefinedundefined

NV
23 tháng 2 2020

ĐKXĐ: \(-2\le x\le3\)

Do trên \(\left[-2;3\right]\) cả \(2x+5\)\(x+4\) đều dương nên BPT tương đương:

\(\frac{1}{2x+5}\le\frac{1}{x+4}\Leftrightarrow x+4\le2x+5\Leftrightarrow x\ge-1\)

Vậy nghiệm của BPT là \(\left[{}\begin{matrix}x=-2\\-1\le x\le3\end{matrix}\right.\)

1 tháng 10 2019

ĐK: \(x^4-4x^3+14x-11\ge0\) (*)

\(PT\Leftrightarrow\left\{{}\begin{matrix}x\le1\\x^4-4x^3+14x-11=x^2-2x+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le1\\x^4-4x^3-x^2+16x-12=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le1\\\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x+2\right)=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)(tm)

NV
1 tháng 10 2019

e/ ĐKXĐ: \(x\ge1\)

\(\Leftrightarrow x+3-\sqrt{x-1}=4\)

\(\Leftrightarrow\sqrt{x-1}=x-1\)

\(\Leftrightarrow x-1=x^2-2x+1\)

\(\Leftrightarrow x^2-3x+2=0\Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

f/ \(\Leftrightarrow\left\{{}\begin{matrix}x+5\ge0\\x^3+x^2+6x+28=\left(x+5\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-5\\x^3-4x+3=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-5\\\left(x-1\right)\left(x^2+x-3\right)=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=\frac{-1\pm\sqrt{13}}{2}\\\end{matrix}\right.\)