Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn kiểm tra lại đề bài câu 1, câu này chỉ có thể rút gọn đến \(2cot^2x+2cotx+1\) nên biểu thức ko hợp lý
Đồng thời kiểm tra luôn đề câu 2, trong cả 2 căn thức đều xuất hiện \(6sin^2x\) rất không hợp lý, chắc chắn phải có 1 cái là \(6cos^2x\)
\(A=\sqrt{\left(1-cos^2x\right)^2+4cos^2x}+\sqrt{\left(1-sin^2x\right)^2+4sin^2x}\)
\(=\sqrt{cos^4x+2cos^2x+1}+\sqrt{sin^4x+2sin^2x+1}\)
\(=\sqrt{\left(cos^2x+1\right)^2}+\sqrt{\left(sin^2x+1\right)^2}\)
\(=sin^2x+cos^2x+2=3\)
b/
\(3\left(sin^8x-cos^8x\right)=3\left(sin^4x+cos^4x\right)\left(sin^4x-cos^4x\right)\)
\(=3\left(sin^4x+cos^4x\right)\left(sin^2x-cos^2x\right)\)
\(=3sin^6x-3sin^4x.cos^2x+3sin^2x.cos^4x-3cos^6x\)
\(\Rightarrow B=-5sin^6x-3sin^4x.cos^2x+3sin^2x.cos^4x+cos^6x+6sin^4x\)
\(=-5sin^6x-3sin^4x\left(1-sin^2x\right)+3cos^4x\left(1-cos^2x\right)+cos^6x+6sin^4x\)
\(=-2sin^6x-2cos^6x+3sin^4x+3cos^4x\)
\(=-2\left(1-3sin^2x.cos^2x\right)+3\left(1-2sin^2x.cos^2x\right)\)
\(=-2+3=1\)
\(A=\left|\sin^4x-\cos^4x\right|=\left|\left(\sin^2x\right)^2-\left(\cos^2x\right)^2\right|\)
\(A=\left|\left(1-\cos^2x\right)^2-\left(\cos^2x\right)^2\right|=\left|1-2\cos^2x+\cos^4x-\cos^4x\right|\)
\(=\left|1-2\cos^2x\right|=\left|\sin^2x-\cos^2x\right|=\left|\left(\sin x-\cos x\right)\left(\sin x+\cos x\right)\right|\)
\(\sin x+\cos x=m\Rightarrow\cos x=m-\sin x\Rightarrow\sin x-\cos x=\sin x-m+\sin x=2\sin x-m\)
Có \(\sin x+\cos x=m\Rightarrow\sin^2x+\cos^2x+2\sin x.\cos x=m^2\)
\(\Leftrightarrow2\sin x.\cos x=m^2-1\)
\(\left(\sin x-\cos x\right)^2=\sin^2x+\cos^2x-2\sin x.\cos x=1-2.\left(m^2-1\right)=1-2m^2+2=3-2m^2\)
\(\Rightarrow\sin x-\cos x=\sqrt{\left(\sin x-\cos x\right)^2}=\sqrt{3-2m^2}\)
\(A=\left|m\sqrt{3-2m^2}\right|=\left|m\right|.\left|\sqrt{3-2m^2}\right|\)
P/s: lm đc mỗi đến đây thui à, cái CM kia chịu nhoa :)
\(\left(sinx+cosx\right)^2=m^2\Rightarrow1+2sinx.cosx=m^2\)\(\Rightarrow2sinx.cosx=m^2-1\)
\(\Rightarrow\left(sinx-cosx\right)^2=\left(sinx+cosx\right)^2-4sinx.cosx=m^2-2\left(m^2-1\right)=2-m^2\)
Mà \(\left(sinx-cosx\right)^2\ge0\) \(\forall x\Rightarrow2-m^2\ge0\Rightarrow m^2\le2\Rightarrow\left|m\right|\le\sqrt{2}\)
Ta lại có \(\left(sinx-cosx\right)^2=2-m^2\Rightarrow\left|sinx-cosx\right|=\sqrt{2-m^2}\)
\(A=\left|sin^4x-cos^4x\right|=\left|\left(sin^2x+cos^2x\right)\left(sin^2x-cos^2x\right)\right|\)
\(=\left|\left(sinx-cosx\right)\left(sinx+cosx\right)\right|\)
\(=\left|m\sqrt{2-m^2}\right|=\left|m\right|\sqrt{2-m^2}\)
a) \(\left(sinx+cosx\right)^2=sin^2x+2sinxcosx+cos^2x\)\(=1+2sinxcosx\).
b) \(\left(sinx-cosx\right)^2=sin^2x-2sinxcosx+cos^2x\)\(=1-2sinxcosx\).
c) \(sin^4x+cos^4x=\left(sin^2x+cos^2x\right)^2-2sin^2xcos^2x\)
\(=1-2sin^2xcos^2x\).
\(sinx+cosx=m\Leftrightarrow\left(sinx+cosx\right)^2=m^2\)
\(\Leftrightarrow1+2sinx.cosx=m^2\Rightarrow sinx.cosx=\dfrac{m^2-1}{2}\)
\(A=sin^2x+cos^2x=1\)
\(B=sin^3x+cos^3x=\left(sinx+cosx\right)^3-3sinx.cosx\left(sinx+cosx\right)\)
\(=m^3-\dfrac{3m\left(m^2-1\right)}{2}=\dfrac{2m^3-3m^3+3m}{2}=\dfrac{3m-m^3}{2}\)
\(C=\left(sin^2+cos^2x\right)^2-2\left(sinx.cosx\right)^2=1-2\left(\dfrac{m^2-1}{2}\right)^2\)
\(D=\left(sin^2x\right)^3+\left(cos^2x\right)^3=\left(sin^2x+cos^2x\right)^3-3\left(sin^2x+cos^2x\right)\left(sinx.cosx\right)^2\)
\(=1-3\left(\dfrac{m^2-1}{2}\right)^2\)
\(D=\frac{9sin^2x-4cos^2x}{3sin^2x+2cos^2x}=\frac{\frac{9sin^2x}{cos^2x}-\frac{4cos^2x}{cos^2x}}{\frac{3sin^2x}{cos^2x}+\frac{2cos^2x}{cos^2x}}=\frac{9tan^2x-4}{3tan^2x+2}=\frac{77}{29}\)
\(\frac{\left(sin^2x\right)^2}{\frac{1}{3}}+\frac{\left(cos^2x\right)^2}{1}\ge\frac{\left(sin^2x+cos^2x\right)^2}{\frac{1}{3}+1}=\frac{3}{4}\)
Dấu "=" xảy ra khi và chỉ khi \(3sin^2x=cos^2x\)
\(\Rightarrow cos^4x=9sin^4x\Rightarrow3sin^4x+9sin^4x=\frac{3}{4}\)
\(\Rightarrow sin^4x=\frac{1}{16}\Rightarrow cos^4x=\frac{9}{16}\)
\(\Rightarrow S=\frac{1}{16}+\frac{27}{16}=\frac{7}{4}\)
1,\(A=3\left(sin^4x+cos^4x\right)-2\left(sin^2x+cos^2x\right)\left(sin^4x-sin^2x.cos^2x+cos^4x\right)\)
\(=3\left(sin^4x+cos^4x\right)-2\left(sin^4x-sin^2x.cos^4x+cos^4x\right)\)
\(=sin^4x+2sin^2x.cos^2x+cos^4x=\left(sin^2x+cos^2x\right)^2=1\)
Vậy...
2,\(B=cos^6x+2sin^4x\left(1-sin^2x\right)+3\left(1-cos^2x\right)cos^4x+sin^4x\)
\(=-2cos^6x+3sin^4x-2sin^6x+3cos^4x\)
\(=-2\left(sin^2x+cos^2x\right)\left(sin^4x-sin^2x.cos^2x+cos^4x\right)+3\left(cos^4x+sin^4x\right)\)
\(=-2\left(sin^4x-sin^2x.cos^2x+cos^4x\right)+3\left(cos^4x+sin^4x\right)\)\(=cos^4x+sin^4x+2sin^2x.cos^2x=1\)
Vậy...
3,\(C=\dfrac{1}{2}\left[cos\left(-\dfrac{7\pi}{12}\right)+cos\left(2x-\dfrac{\pi}{12}\right)\right]+\dfrac{1}{2}\left[cos\left(-\dfrac{7\pi}{12}\right)+cos\left(2x+\dfrac{11\pi}{12}\right)\right]\)
\(=cos\left(-\dfrac{7\pi}{12}\right)+\dfrac{1}{2}\left[cos\left(2x-\dfrac{\pi}{12}\right)+cos\left(2x+\dfrac{11\pi}{12}\right)\right]\)\(=\dfrac{-\sqrt{6}+\sqrt{2}}{4}+\dfrac{1}{2}\left[cos\left(2x-\dfrac{\pi}{12}\right)+cos\left(2x-\dfrac{\pi}{12}+\pi\right)\right]\)
\(=\dfrac{-\sqrt{6}+\sqrt{2}}{4}+\dfrac{1}{2}\left[cos\left(2x-\dfrac{\pi}{12}\right)-cos\left(2x-\dfrac{\pi}{12}\right)\right]\)\(=\dfrac{-\sqrt{6}+\sqrt{2}}{4}\)
Vậy...
4, \(D=cos^2x+\left(-\dfrac{1}{2}cosx-\dfrac{\sqrt{3}}{2}sinx\right)^2+\left(-\dfrac{1}{2}.cosx+\dfrac{\sqrt{3}}{2}.sinx\right)^2\)
\(=cos^2x+\dfrac{1}{4}cos^2x+\dfrac{\sqrt{3}}{4}cosx.sinx+\dfrac{3}{4}sin^2x+\dfrac{1}{4}cos^2x-\dfrac{\sqrt{3}}{4}cosx.sinx+\dfrac{3}{4}sin^2x\)
\(=\dfrac{3}{2}\left(cos^2x+sin^2x\right)=\dfrac{3}{2}\)
Vậy...
5, Xem lại đề
6,\(F=-cosx+cosx-tan\left(\dfrac{\pi}{2}+x\right).cot\left(\pi+\dfrac{\pi}{2}-x\right)\)
\(=tan\left(\pi-\dfrac{\pi}{2}-x\right).cot\left(\dfrac{\pi}{2}-x\right)\)\(=tan\left(\dfrac{\pi}{2}-x\right).cot\left(\dfrac{\pi}{2}-x\right)\)\(=cotx.tanx=1\)
Vậy...
\(sinx+cosx=\sqrt{2}\)
\(\Leftrightarrow\left(sinx+cosx\right)^2=2\)
\(\Leftrightarrow sin^2x+cos^2x+2.sinx.cosx=2\)
\(\Leftrightarrow1+2.sinx.cosx=2\)
\(\Leftrightarrow2.sinx.cosx=1\)
Khi đó \(sin^4x+cos^4x=\left(sin^2x+cos^2x\right)^2-2.sinx.cosx=1^2-1=0\)