Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 1 - 2 + 22 - 23 + ....... + 22020
2S = 2(1 - 2 + 22 - 23 + ....... + 22020)
2S = 2 - 22 + 23 - 24 + ....... + 22021
S = (2 - 22 + 23 - 24 + ....... + 22021) - (1 - 2 + 22 - 23 + ....... + 22020)
S = 22021 - 1
3S = 3(22021 - 1)
3S - 22021 = 3(22021 - 1) - 22021
3S - 22021 = 3.22021 - 3 - 22021
➤ 3S - 22021 = 22021 . 2 - 3
Đặt A= \(\frac{1}{2}\)-\(\frac{1}{2^2}\)+\(\frac{1}{2^3}\)-\(\frac{1}{2^2}\)+....+\(\frac{1}{2^2}\)
=> 2A=1-\(\frac{1}{2}\)+\(\frac{1}{2^2}\)-\(\frac{1}{23}\)+...+\(\frac{1}{2^{98}}\)
=> 2A+A=1+\(\frac{1}{2^{99}}\)
=> 3A=1+\(\frac{1}{2^{99}}\)
=> A= \(\frac{1}{3}\)+\(\frac{1}{3.2^{99}}\)
B=2+22+23+...+2100
2B=22+23+24+...+2101
2B-B=(22+23+24+...+2101)-(2+22+23+...+2100)
B=2101-2
Theo như đề bài thì B+2=2X mà B=2101-2
Vậy B+2=2101-2+2=2101=2x
Suy ra x=101
Đáp số 101
\(x^4\cdot x^7\cdot...\cdot x^{100}\)
\(=x^{4+7+...+100}\)
\(=x^{52\cdot33}=x^{1716}\)
\(x^1\cdot x^2\cdot x^3\cdot...\cdot x^{2006}\)
Ta có : \(x^1\cdot x^2=x^{1+2}=x^3\)
Tương tự : \(x^1\cdot x^2\cdot x^3=x^{1+2+3}=x^6\)
Áp dụng vào bài toán :
\(x^1\cdot x^2\cdot x^3\cdot...\cdot x^{2006}=x^{1+2+3+...+2006}\)
\(\Rightarrow x^{1+2+3+...+2006}=x^{2013021}\)
\(3+3^2+3^3+...+3^{60}\\ =\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{59}+3^{60}\right)\\ =\left(1+3\right)\left(3+3^3+...+3^{59}\right)\\ =4\left(3+3^3+...+3^{59}\right)⋮4\\ 3+3^2+3^3+...+3^{60}\\ =\left(3+3^2+3^3\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\\ =3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\\ =\left(1+3+3^2\right)\left(3+3^4+...+3^{58}\right)\\ =13\left(3+3^4+...+3^{58}\right)⋮13\)
đề bài
\(s=1-2+2^2-2^3.....+2^{2020}\)
chúc bạn học tốt!