\(xy=24;yz=12;zt=36;xt=2\) Thì giá trị của \(xyzt\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2016

+) nhân từng vế : (xyzt)2=24.12.36.2=20736=>xyzt=144

+)nhân từng vế :xyzt=24.36=864

+)nhân từng vế:xyzt=12.2=24

Vậy bài toán có 3 đáp số là :24;144;864

7 tháng 3 2016

\(=>x.y.y.z.z.t.t.x=x^2.y^2.z^2.t^2=\left(xyzt\right)^2\)(1)

Mà x.y.y.z.z.t.t.x=24.12.36.2=20736                                              (2)

Từ (1) và (2) suy ra \(\left(xyzt\right)^2=20736\)

\(=>xyzt=\sqrt{20736}=144\)

k cho mình nhak

7 tháng 3 2016

đc 144, cách làm đơn giản lắm

7 tháng 3 2016

ta có: xytzztxt=24.12.36.2

(xyzt)^2=20736

xyzt=căn 2 của 20736=144

1 tháng 4 2018

ai  mà biết hả

1 tháng 4 2018

Bạn vô duyên quá đấy!

12 tháng 2 2023

Cho xyzt là các chữ số thỏa mãn xy khác không tìm số a = x y z t biết a - 2 x y z t = xz với kí hiệu xyz t là số tự nhiên có 4 chữ số thứ tự là x y z t

28 tháng 3 2018

\(yt=48;yz=24\) nên \(t=2z\). Thay vào \(zt=32\) có:

\(2z^2=32\Rightarrow z=\pm4\)

Với \(z=4\)\(t=\dfrac{32}{x}=8;y=\dfrac{24}{z}=6;x=\dfrac{12}{y}=2\)

Với \(z=-4\)\(t=\dfrac{32}{z}=-8;y=\dfrac{24}{z}=-6;x=\dfrac{12}{y}=-2\)

Vậy bộ \(x;y;z;t\) thỏa mãn là \(2;4;6;8\)\(-2;-4;-6;-8\)

28 tháng 3 2018

mk ko viết lại đề nữa nhé

=>(yzt)2=48.24.32

=> yzt = 192

=> y = 6

z = 4

t = 8

=> x = 2

Vậy (x,y,z,t) = (2, 6, 4, 8)

11 tháng 2 2017

\(1.\)

Ta có :

\(x+y+z=0\)

\(\Rightarrow x+y=-z\)

\(y+z=-x\)

\(x+z=-y\)

\(\Rightarrow M=\left(-z\right)\left(-x\right)\left(-y\right)=-xyz\)

\(xyz=2\)

\(\Rightarrow M=-2\)

Vậy : \(M=-2\)

11 tháng 2 2017

\(2.\)

\(a.\)

Ta có :

\(yt.yz=48.24\)

\(\Rightarrow y^2.zt=48.24\)

\(yt=32\Rightarrow y^2.32=48.24\)

\(\Rightarrow y^2=\frac{48.24}{32}\)

\(\Rightarrow y^2=36\)

\(\Rightarrow y=\pm6\)

+ Nếu \(x=6\)

Ta có : \(t=48:6=8\)

\(z=24:6=4\)

\(x=12:6=2\)

+ Nếu \(y=-6\)

Ta có : \(t=48:\left(-6\right)=-8\)

\(z=24:\left(-6\right)=-4\)

\(x=12:\left(-6\right)=-2\)

Vậy \(x=-2;y=-6;z=-4;t=-8\) hoặc \(x=2;y=6;z=4;t=8\)

\(b.\)

Ta có :

\(y+t=11\) \(\left(1\right)\)

\(y+z=9\) \(\left(2\right)\)

\(x+y=6\) \(\left(3\right)\)

\(z+t=12\) \(\left(4\right)\)

Lấy \(\left(1\right)+\left(2\right)\), ta được :

\(2y+t+z=20\)

\(t+z=12\)

\(\Rightarrow2y+12=20\)

\(\Rightarrow2y=8\)

\(\Rightarrow y=4\)

Từ \(\left(2\right)\) \(\Rightarrow z=9-y=9-4=5\)

Từ \(\left(3\right)\) \(\Rightarrow x=6-y=6-4=2\)

Từ \(\left(4\right)\) \(\Rightarrow t=12-z=12-5=7\)

Vậy : \(x=2;y=4;z=5;t=7\)

19 tháng 2 2017

Ta có:

\(\left\{\begin{matrix}xy=24\\yz=12\\zt=36\\xt=2\end{matrix}\right.\Rightarrow xxyyzztt=24.12.36.2\)

\(\Rightarrow x^2y^2z^2t^2=24.12.36.2=20736\)

\(\Rightarrow xyzt^2=20736\)

\(\Rightarrow xyzt=\sqrt{20736}=144\)

Vậy \(xyzt=144\)

19 tháng 2 2017

hi

ucche

Violympic toán 7