\(\overline{x7y8z9}\) vừa chia hết cho 7, vừa chia hết ch...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2019

a) Vì\(\overline{abc}-\overline{deg}⋮13\Rightarrow\overline{abc}-\overline{deg}=13.k\Rightarrow\overline{abc}=\overline{deg}+13.k\left(k\in N\right)\)

Do vậy : \(\overline{abcdeg}=1000.\overline{abc}+\overline{deg}=1000.\left(\overline{deg}+13.k\right)+\overline{deg}=\left(1001.\overline{deg}+100.13.k\right)⋮13\)

b) \(\overline{abc}=100.a+10.b+c=98.a+7.b+\left(2a+3b+c\right)\)

Vậy nếu \(\overline{abc⋮7}\) thì (2a + 3b + c ) chia hết cho 7

20 tháng 1 2019

Mất 20 phút để làm cái bài này , đánh máy mỏi tay quá gianroi

23 tháng 7 2017

ai giúp mk mk tc cho 3 cái

24 tháng 9 2017

C: Dấu hiệu chia hết cho 11 : 

1 số chia hết cho 11 và chỉ khi tổng các số hàng chẵn / lẻ chia hết cho 11

Theo giả thiết /ab + /cd + /eg = 10a + b + 10c + d + 10e + g = 11. ( a + c + e ) + ( b +d + g ) - ( a + c + e ) chia hết cho 11

Suy ra : ( b + d + g ) - ( a + c + e ) chia hết cho 11 

Suy ra abcdeg chia hết cho 11 

C2 : Ta có

abcdeg = ab . 10000 = cd . 100 + eg

=  ( 9999ab )  +  ( 99cd )+ ( ab + cd + eg ) 

Vì 9999ab + 99cd chia hết cho 11 và ab + cd + eg chia hết cho 11

 Suy ra : abcdeg chia hết cho 11

( cách nào cũng đúng nha ) 

16 tháng 7 2017

1. Ta có 14 và 28 có cùng số dư khi chia7 là 0

mà 28 - 14 = 14 chia hết cho 7 (đpcm)

2. Ta có : \(\overline{aaa}=\overline{a}.111\)

=> \(\overline{aaa}=\overline{a}.3.37⋮37\)

=> \(\overline{aaa}\) luôn chia hết cho 37 (đpcm)

16 tháng 7 2017

1, Gọi số thứ nhất có dạng 7k+n ; số thứ 2 có dạng 7x+n;

=> \(7k+n-\left(7x+n\right)=7k-7x=7\left(k-x\right)⋮7\)

2, Ta có: \(\overline{aaa}=100a+10a+a=111a=37.3.a⋮37\)

Do có chứa 1 thừa số là 37;

3, \(\overline{ab}-\overline{ba}=10a+b-\left(10b+a\right)=9a-9b=9\left(a-b\right)⋮9\)

18 tháng 5 2017

Ta có : \(\overline{abcabc}=\overline{abc}.1001=\overline{abc}.11.91⋮11\)

\(\Rightarrow\overline{abcabc}⋮11\)

18 tháng 5 2017

Ta có \(\overline{abcabc}=\overline{abc}.1001\)

\(=\overline{abc}.11.91⋮11\)

\(=>\overline{abcabc}⋮11\left(dpcm\right)\)

16 tháng 12 2017

chứng minh:bca⋮37

bca=b.100+c.10+a

bca=b.100+c.10+a.1

bca=(b+c+a).(100+10+1)

bca=(b+c+a).111

bca=(b+c+a).3.37

⇒bca⋮37

1 tháng 12 2017

Ta có \(\overline{abba}=a.1000+b.100+b.10+a\)

\(=\left(a.1000+a\right)+\left(b.100+b.10\right)\)

\(=a.1001+b.110\)

\(=11.\left(a.91+b.10\right)⋮11\)

Vậy....

1 tháng 12 2017

abba = 1000a+100b+10b+a

          =(1000a+a)+(100b+10b)

          =1001a+110b

          =(91×11)a+(11×10)b

Vi 11chia het cho 11=> (91×11)a chia het cho 11 va (11×10)b chia het cho 11

Vay  so co dang abba se chia het cho 11

Chuc ban hoc gioi nhe Hoang Vu .👩