Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=cosa\left(sinb.cosc-cosb.sinc\right)+cosb\left(sinc.cosa-cosc.sina\right)+cosc\left(sinacosb-cosasinb\right)\)
\(A=cosasinbcosc-cosacosbsinc+cosacosbsinc-sinacosbcosc+sinacosbcosc-cosasinbcosc\)
\(A=0\)
\(B=sin^2x+\frac{1}{2}\left(cos\frac{2\pi}{3}+cos2x\right)\)
\(B=\frac{1}{2}-\frac{1}{2}cos2x-\frac{1}{4}+\frac{1}{2}cos2x\)
\(B=\frac{1}{4}\)
\(C=\frac{1}{2}-\frac{1}{2}cos2x+\frac{1}{2}-\frac{1}{2}cos\left(\frac{4\pi}{3}+2x\right)+\frac{1}{2}-\frac{1}{2}cos\left(\frac{4\pi}{3}-2x\right)\)
\(C=\frac{3}{2}-\frac{1}{2}cos2x-\frac{1}{2}\left(cos\left(\frac{4\pi}{3}+2x\right)+cos\left(\frac{4\pi}{3}-2x\right)\right)\)
\(C=\frac{3}{2}-\frac{1}{2}cos2x-cos\frac{4\pi}{3}.cos2x\)
\(C=\frac{3}{2}-\frac{1}{2}cos2x+\frac{1}{2}cos2x\)
\(C=\frac{3}{2}\)
\(D=\frac{1}{2}\left[\sqrt{2}sin\left(\frac{\pi}{4}+x\right)\right]^2-sin^2x-sinx.\sqrt{2}cos\left(\frac{\pi}{4}+x\right)\)
\(D=\frac{1}{2}\left(sinx+cosx\right)^2-sin^2x-sinx\left(sinx-cosx\right)\)
\(D=\frac{1}{2}\left(1+2sinx.cosx\right)-sin^2x-sin^2x+sinx.cosx\)
\(D=\frac{1}{2}+sinxcosx+sinxcosx=\frac{1}{2}+sin2x\)
Góc độ cao của thang dựa vào tường là 60º và chân thang cách tường 4,6 m. Chiều dài của thang là
\(2sin\left(\frac{\pi}{2}+x\right)+sin\left(3\pi-x\right)+sin\left(\frac{3\pi}{2}+x\right)+cos\left(\frac{\pi}{2}+x\right)\)
\(=2cosx+sinx-cosx-sinx\)
\(=cosx\)
a/ \(\pi< x< \frac{3\pi}{2}\Rightarrow sinx< 0\)
\(\Rightarrow sinx=-\sqrt{1-cos^2x}=-\frac{5}{13}\)
\(sin\left(\frac{\pi}{3}-x\right)=sin\frac{\pi}{3}cosx-cos\frac{\pi}{3}sinx=\frac{\sqrt{3}}{2}.\left(-\frac{12}{13}\right)-\frac{1}{2}.\left(-\frac{5}{13}\right)=\frac{5-12\sqrt{3}}{26}\)
b/ \(\pi< x< \frac{3\pi}{2}\Rightarrow cosx< 0\)
\(\Rightarrow cosx=-\sqrt{1-sin^2x}=-\frac{3}{5}\)
\(cot\left(x-\frac{\pi}{4}\right)=\frac{cos\left(x-\frac{\pi}{4}\right)}{sin\left(x-\frac{\pi}{4}\right)}=\frac{sinx+cosx}{sinx-cosx}=7\)
c/ \(cot\left(\frac{5\pi}{2}-x\right)=cot\left(2\pi+\frac{\pi}{2}-x\right)=tanx=2\)
\(\Rightarrow tan\left(x+\frac{\pi}{4}\right)=\frac{tanx+tan\frac{\pi}{4}}{1-tanx.tan\frac{\pi}{4}}=\frac{2+1}{1-2.1}=-3\)
\(A=2cosx-3cosx-sin\left(3\pi+\frac{\pi}{2}-x\right)+tan\left(\pi+\frac{\pi}{2}-x\right)\)
\(A=-cosx+sin\left(\frac{\pi}{2}-x\right)+tan\left(\frac{\pi}{2}-x\right)\)
\(A=-cosx+cosx+cotx=cotx\)
\(B=2cosx+sin\left(4\pi+\pi-x\right)+sin\left(2\pi-\frac{\pi}{2}+x\right)-sinx\)
\(B=2cosx+sin\left(\pi-x\right)+sin\left(-\frac{\pi}{2}+x\right)-sinx\)
\(B=2cosx+sinx-sin\left(\frac{\pi}{2}-x\right)-sinx\)
\(B=2cosx-cosx=cosx\)
\(=sin\left(x+\frac{\pi}{2}+42\pi\right)+cos\left(206\pi+\pi+x\right)+sin^2\left(32\pi+\pi+x\right)+sin^2\left(x+\frac{\pi}{2}-2\pi\right)\)
\(=sin\left(x+\frac{\pi}{2}\right)+cos\left(\pi+x\right)+sin^2\left(\pi+x\right)+sin^2\left(x+\frac{\pi}{2}\right)\)
\(=cosx-cosx+sin^2x+cos^2x\)
\(=sin^2x+cos^2x=1\)
\(\frac{1-cosx+cos2x}{sin2x-sinx}=\frac{1-cosx+2cos^2x-1}{2sinx.cosx-sinx}=\frac{cosx\left(2cosx-1\right)}{sinx\left(2cosx-1\right)}=\frac{cosx}{sinx}=cotx\)
\(A=sin\left(\frac{\pi}{4}+x\right)-sin\left(\frac{\pi}{2}-\frac{\pi}{4}+x\right)=sin\left(\frac{\pi}{4}+x\right)-sin\left(\frac{\pi}{4}+x\right)=0\)
\(A=\frac{2sinx.cosx+sinx}{1+2cos^2x-1+cosx}=\frac{sinx\left(2cosx+1\right)}{cosx\left(2cosx+1\right)}=\frac{sinx}{cosx}=tanx\)
\(B=\frac{cosa}{sina}\left(\frac{1+sin^2a}{cosa}-cosa\right)=\frac{cosa}{sina}\left(\frac{1+sin^2a-cos^2a}{cosa}\right)=\frac{cosa}{sina}.\frac{2sin^2a}{cosa}=2sina\)
\(C=\frac{1+cos2x+cosx+cos3x}{2cos^2x-1+cosx}=\frac{1+2cos^2x-1+2cos2x.cosx}{cos2x+cosx}=\frac{2cosx\left(cosx+cos2x\right)}{cos2x+cosx}=2cosx\)
\(D=\frac{2sinx.cosx.\left(-tanx\right)}{-tanx.sinx}-2cosx=2cosx-2cosx=0\)
\(E=cos^2x.cot^2x-cot^2x+cos^2x+2cos^2x+2sin^2x\)
\(E=cot^2x\left(cos^2x-1\right)+cos^2x+2=\frac{cos^2x}{sin^2x}\left(-sin^2x\right)+cos^2x+2=2\)
\(F=\frac{sin^2x\left(1+tan^2x\right)}{cos^2x\left(1+tan^2x\right)}=\frac{sin^2x}{cos^2x}=tan^2x\)
Câu G mẫu số có gì đó sai sai, sao lại là \(2sina-sina?\)
\(H=sin^4\left(\frac{\pi}{2}+a\right)-cos^4\left(\frac{3\pi}{2}-a\right)+1=cos^4a-sin^4a+1\)
\(=\left(cos^2a-sin^2a\right)\left(cos^2a+sin^2a\right)+1=cos^2a-\left(1-cos^2a\right)+1=2cos^2a\)
\(sina.sin\left(\frac{\pi}{3}-a\right)sin\left(\frac{\pi}{3}+a\right)\)
\(=-\frac{1}{2}sina\left[cos\frac{2\pi}{3}-cos2a\right]=-\frac{1}{2}sina\left(-\frac{1}{2}-cos2a\right)\)
\(=\frac{1}{4}sina+\frac{1}{2}sina.cos2a=\frac{1}{4}sina+\frac{1}{4}sin3a-\frac{1}{4}sina\)
\(=\frac{1}{4}sin3a\)
\(sin\frac{\pi}{9}sin\frac{2\pi}{9}sin\frac{4\pi}{9}=sin\frac{\pi}{9}sin\left(\frac{\pi}{3}-\frac{\pi}{9}\right)sin\left(\frac{\pi}{3}+\frac{\pi}{9}\right)=\frac{1}{4}sin\frac{\pi}{3}=\frac{\sqrt{3}}{8}\)
\(cosa.cos\left(\frac{\pi}{3}-a\right)cos\left(\frac{\pi}{3}+a\right)=\frac{1}{2}cosa\left(cos\frac{2\pi}{3}+cos2a\right)\)
\(=\frac{1}{2}cosa\left(cos2a-\frac{1}{2}\right)=\frac{1}{2}cosa.cos2a-\frac{1}{4}cosa\)
\(=\frac{1}{4}cos3a+\frac{1}{4}cosa-\frac{1}{4}cosa=\frac{1}{4}cos3a\)
\(cos\frac{\pi}{18}cos\frac{5\pi}{18}cos\frac{7\pi}{18}=cos\frac{\pi}{18}.cos\left(\frac{\pi}{3}-\frac{\pi}{18}\right).cos\left(\frac{\pi}{3}+\frac{\pi}{18}\right)=\frac{1}{4}cos\frac{\pi}{6}=\frac{\sqrt{3}}{8}\)
\(sin\left(x+\frac{\pi}{3}\right)-sin\left(x-\frac{\pi}{3}\right)=sin\left(6\pi+\frac{\pi}{2}\right)\)
\(\Leftrightarrow2cosx.sin\frac{\pi}{3}=sin\left(\frac{\pi}{2}\right)\)
\(\Leftrightarrow2cosx.\frac{\sqrt{3}}{2}=1\)
\(\Rightarrow cosx=\frac{1}{\sqrt{3}}\)