Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{3x^2+2}-\sqrt{4+x}}{x^2-1}=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{3x^2-x-2}{\sqrt{3x^2+2}+\sqrt{4+x}}}{x^2-1}=\lim\limits_{x\rightarrow1}\dfrac{3x+2}{\left(x+1\right)\left(\sqrt{3x^2+2}+\sqrt{4+x}\right)}=\dfrac{5}{2.2\sqrt{5}}=\dfrac{\sqrt{5}}{4}\).
Từ đó a = 5; b = 4 nên a - b = 1.
Lời giải:
$A=\frac{2}{3}+\frac{4}{3^2}+\frac{6}{3^3}+...+\frac{2n}{3^n}$
$3A=2+\frac{4}{3}+\frac{6}{3^2}+....+\frac{2n}{3^{n-1}}$
$3A-A=2+\frac{2}{3}+\frac{2}{3^2}+....+\frac{2}{3^{n-1}}-\frac{2n}{3^n}$
$2A=2+\frac{2}{3}+\frac{2}{3^2}+....+\frac{2}{3^{n-1}}-\frac{2n}{3^n}$
$A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{n-1}}-\frac{n}{3^n}$
$3A=3+1+\frac{1}{3}+....+\frac{1}{3^{n-2}}-\frac{n}{3^{n-1}}$
$3A-A=3-\frac{1}{3^{n-1}}-\frac{n}{3^{n-1}}+\frac{n}{3^n}$
$2A=3-\frac{n+1}{3^{n-1}}+\frac{n}{3^n}$
$2A=\frac{3^{n+1}-2n-3}{3^n}$
$A=\frac{3.3^n-2n-3}{2.3^n}$
$\Rightarrow a=3; b=1; c=2\Rightarrow abc=6$
\(y'=\dfrac{1}{2\sqrt{x-1}}+\dfrac{1}{\sqrt{2x+1}}\)
\(\Rightarrow y'\left(3\right)=\dfrac{1}{2\sqrt{2}}+\dfrac{1}{\sqrt{7}}\Rightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=1\end{matrix}\right.\Rightarrow a+b=\dfrac{3}{2}\)
\(S=1.3^0+2.3^1+3.3^2+...+11.3^{10}\)
\(3S=1.3^1+2.3^2+...+11.3^{11}\)
\(\Rightarrow S-3S=1+3^1+3^2+...+3^{10}-11.3^{11}\)
\(\Rightarrow-2S=1.\dfrac{3^{11}-1}{3-1}-11.3^{11}\)
\(\Rightarrow-2S=\dfrac{1}{2}.3^{11}-\dfrac{1}{2}-11.3^{11}\)
\(\Rightarrow-2S=-\dfrac{21.3^{11}+1}{2}\)
\(\Rightarrow S=\dfrac{1}{4}+\dfrac{21.3^{11}}{4}\)