K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2016

a) đenta phẩy=m^2-m^2+1>0

=>.........................

AH
Akai Haruma
Giáo viên
24 tháng 12 2018

Bài 1:
ĐKXĐ: \(1\leq x\leq 3\)

Ta có:

\(\sqrt{x-1}+\sqrt{3-x}=3x^2-4x-2\)

\(\Leftrightarrow \sqrt{x-1}-1+\sqrt{3-x}-1=3x^2-4x-4\)

\(\Leftrightarrow \frac{x-2}{\sqrt{x-1}+1}+\frac{2-x}{\sqrt{3-x}+1}=(x-2)(3x+2)\)

\(\Leftrightarrow (x-2)\left(3x+2+\frac{1}{\sqrt{3-x}+1}-\frac{1}{\sqrt{x-1}+1}\right)=0(1)\)

Với mọi $1\leq x\leq 3$ ta luôn có \(3x+2\geq 5; \frac{1}{\sqrt{3-x}+1}>0; \frac{1}{\sqrt{x-1}+1}\leq 1\)

\(\Rightarrow 3x+2+\frac{1}{\sqrt{3-x}+1}-\frac{1}{\sqrt{x-1}+1}>0(2)\)

Từ (1);(2) suy ra \(x-2=0\Rightarrow x=2\)

Vậy $x=2$ là nghiệm duy nhất của pt đã cho.

AH
Akai Haruma
Giáo viên
24 tháng 12 2018

Bài 2:

Với mọi $x,y,z$ nguyên không âm thì :

\(2014^z=2012^x+2013^y\geq 2012^0+2013^0=2\Rightarrow z\geq 1\)

Với $z\geq 1$ thì ta luôn có \(2012^x+2013^y=2014^z\) là số chẵn

\(2013^y\) luôn lẻ nên \(2012^x\) phải lẻ. Điều này chỉ xảy ra khi $x=0$

Vậy $x=0$

Khi đó ta có: \(1+2013^y=2014^z\)

Nếu $z=1$ thì dễ thu được $y=1$

Nếu $z>1$:

Ta có: \(2014^z\vdots 4(1)\)

\(2013\equiv 1\pmod 4\Rightarrow 1+2013^y\equiv 1+1\equiv 2\pmod 4\)

Tức \(1+2013^y\not\vdots 4\) (mâu thuẫn với (1))

Vậy PT có nghiệm duy nhất \((x,y,z)=(0,1,1)\)

26 tháng 2 2022

Thay x=3 vào pt ta có:

\(\dfrac{2}{x-m}-\dfrac{5}{x+m}=1\\ \Leftrightarrow\dfrac{2}{3-m}-\dfrac{5}{3+m}=1\\ \Leftrightarrow\dfrac{2\left(3+m\right)-5\left(3-m\right)}{\left(3-m\right)\left(3+m\right)}=1\\ \Rightarrow6+2m-15+5m=3^2-m^2\\ \Leftrightarrow-9+7m-9+m^2-0\\ \Leftrightarrow m^2+7m-18=0\\ \Leftrightarrow\left[{}\begin{matrix}m=2\\m=-9\end{matrix}\right.\)

a) Thay m = -4 vào phương trình, ta có:

\(x^2+5x-6=0\)

\(\Leftrightarrow\left(x+6\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=1\end{matrix}\right.\)

KL: Vậy phương trình có tập nghiệm \(S=\left\{-6;1\right\}\) khi m = -4

b) Xét \(\Delta=5^2-4.1.\left(m-2\right)=25-4m+8=33-4m\)

Phương trình có 2 nghiệm phân biệt \(\Leftrightarrow33-4m>0\Leftrightarrow m< \dfrac{33}{4}\)

Theo định lý Vi-et, ta có: \(\left\{{}\begin{matrix}x_1+x_2=-5\\x_1.x_2=m-2\end{matrix}\right.\)

Để \(x_1^2+x^2_2-2x_1=25+2x_2\)

<=> \(\left(x_1+x_2\right)^2-2x_1x_2-2\left(x_1+x_2\right)-25=0\)

<=> \(\left(-5\right)^2-2\left(m-2\right)-2\left(-5\right)-25=0\)

<=> \(25-2m+4+10-25=0\)

<=> 2m = 14

<=> m = 7 (Tm)

Vậy m = 7 để phương trình có 2 nghiệm phân biệt x1, x2 thỏa mãn \(x_1^2+x^2_2-2x_1=25+2x_2\)

10 tháng 3 2018

a)cho m=0 =>x tự làm theo ct nhe 
B) pt co 2 n <=> delta=1-(m-1)>0 <=>m<2 
c)viet x1^2+x2^2=(x1+x2)^2-2x1x2 
=2^2-2(m-1)=10 =>m=-2

10 tháng 3 2018

yheem đap an đi

11 tháng 6 2020

dcv_new 

dcv - new

Thay m = - 1 vào thì ta có: \(x^2-x-6=0\)

<=> x = 3 hoặc x = -2 

Vậy m = -1 và x2 = - 2

11 tháng 6 2020

a, Thay \(x_1=3\)vào phương trình , khi đó :

\(pt< =>\)\(3^2+3m+2m-4=0\)

\(< =>5m+5=0\)

\(< =>m=-\frac{5}{5}=-1\)

Thay \(m=-1\)vào phương trình , khi đó :

\(pt< =>x^2-x+2=0\)

\(< =>x=\varnothing\left(vo-nghiem\right)\)(giải delta)

Vậy phương trình chỉ có nghiệm kép khi \(m=-1\)

b, Theo hệ thức vi ét ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-m\\x_1x_2=\frac{c}{a}=2m-4\end{cases}}\)

Khi đó \(A=\frac{2m-4+3}{-m}=\frac{2m-1}{-m}\)

Bạn thiếu đề rồi thì phải !

8 tháng 6 2016

PT có 2 no dương \(\Leftrightarrow\hept{\begin{cases}\Delta\ge0\\x1.x2>0\\x1+x2>0\end{cases}}\) .... tự giải đoạn này nhé bạn
sau đó viet thay vào Q giải bình thường