K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2018

Chọn B

Xét f(x) =  x 4 - 38 x 2 + 120 x + 4 m  trên đoạn [0;2] ta có:

Dấu “=” xảy ra khi và chỉ khi 

Nhận xét: Với trắc nghiệm thì ta thử đáp án được đáp án B

22 tháng 4 2017

\(f\left(x\right)=\dfrac{2x-1}{x-3}=\dfrac{2\left(x-3\right)+5}{x-3}=1+\dfrac{5}{\left(x-3\right)}\)

f(x) có dạng \(y=\dfrac{5}{x}\Rightarrow\) f(x) luôn nghịch biến

Tất nhiên bạn có thể tính đạo hàm --> f(x) <0 mọi x khác -3

f(x) luôn nghich biến [0;2] < -3 thuộc nhánh Bên Phải tiệm cận đứng

\(\Rightarrow\left\{{}\begin{matrix}Max=f\left(0\right)=\dfrac{1}{3}\\Min=f\left(2\right)=-3\end{matrix}\right.\)

Câu 1 : Gọi M , m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = \(\frac{3sinx+2}{sinx+1}\) trên đoạn \(\left[0;\frac{\Pi}{2}\right]\) . Khi đó giá trị của \(M^2+m^2\) là A. \(\frac{31}{2}\) B. \(\frac{11}{2}\) C. \(\frac{41}{4}\) D. \(\frac{61}{4}\) Câu 2 : Gọi M , N lần lượt là giá trị lớn nhất , giá trị nhỏ nhất của hàm số y = \(x+\sqrt{4-x^2}\) . giá trị...
Đọc tiếp

Câu 1 : Gọi M , m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = \(\frac{3sinx+2}{sinx+1}\) trên đoạn \(\left[0;\frac{\Pi}{2}\right]\) . Khi đó giá trị của \(M^2+m^2\)

A. \(\frac{31}{2}\) B. \(\frac{11}{2}\) C. \(\frac{41}{4}\) D. \(\frac{61}{4}\)

Câu 2 : Gọi M , N lần lượt là giá trị lớn nhất , giá trị nhỏ nhất của hàm số y = \(x+\sqrt{4-x^2}\) . giá trị của biểu thức ( M + 2N ) là

A. \(2\sqrt{2}+2\) B. \(4-2\sqrt{2}\) C. \(2\sqrt{2}-4\) D. \(2\sqrt{2}-2\)

Câu 3 : Tìm tất cả các giá trị của tham số m để giá trị nhỏ nhất của hàm số y = \(-x^3-3x^2+m\) trên đoạn \(\left[-1;1\right]\) bằng 0

A. m = 0 B. m = 6 C. m = 2 D. m = 4

Câu 4 : Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = \(\frac{x+m}{x+1}\) trên \(\left[1;2\right]\) bằng 8 ( m là tham số thực ) . Khẳng định nào sau đây đúng ?

A. m > 10 B. 8 < m < 10 C. 0 < m < 4 D. 4 < m < 8

2
NV
16 tháng 10 2020

3.

\(y'=-3x^2-6x=0\Rightarrow\left[{}\begin{matrix}x=-2\\x=0\end{matrix}\right.\)

\(y\left(-1\right)=m-2\) ; \(y\left(1\right)=m-4\)

\(\Rightarrow y_{min}=y\left(1\right)=m-4\)

\(\Rightarrow m-4=0\Rightarrow m=4\)

4.

Hàm đã cho bậc nhất trên bậc nhất nên đơn điệu trên mọi khoảng xác định

\(\Rightarrow y_{min}+y_{max}=y\left(1\right)+y\left(2\right)=\frac{m+1}{2}+\frac{m+2}{3}=8\)

\(\Rightarrow m=\frac{41}{5}\)

Đáp án B

NV
16 tháng 10 2020

1.

\(y'=\frac{1}{\left(sinx+1\right)^2}.cosx>0\Rightarrow y\) đồng biến

\(m=y_{min}=y\left(0\right)=2\)

\(M=y_{max}=y\left(1\right)=\frac{5}{2}\)

\(\Rightarrow M^2+m^2=\frac{41}{4}\)

2.

Hàm xác định trên \(\left[-2;2\right]\)

\(y'=1-\frac{x}{\sqrt{4-x^2}}=0\Leftrightarrow x=\sqrt{2}\)

\(y\left(-2\right)=-2\) ; \(y\left(\sqrt{2}\right)=2\sqrt{2}\) ; \(y\left(2\right)=2\)

\(\Rightarrow N=-2;M=2\sqrt{2}\)

\(\Rightarrow M+2N=2\sqrt{2}-4\)

16 tháng 5 2016

\(f\left(x\right)=\frac{x^2}{2}-4\ln\left(3-x\right)\) trên đoạn \(\left[-2;1\right]\)

Ta có :

         \(f'\left(x\right)=x+\frac{4}{3-x}=\frac{-x^2+3x+4}{3-x}=0\Leftrightarrow-x^2+3x+4=0\)

                                                            \(\Leftrightarrow\left[\begin{array}{nghiempt}x=-1\in\left[-2;1\right]\\x=4\notin\left[-2;1\right]\end{array}\right.\)

Mà : 

   \(\begin{cases}f\left(-2\right)=2-4\ln5\\f\left(-1\right)=\frac{1}{2}-8\ln2=\frac{1-16\ln2}{2}\\f\left(1\right)=\frac{1}{2}-4\ln2=\frac{1-8\ln2}{2}\end{cases}\)    \(\Rightarrow\begin{cases}Max_{x\in\left[-2;1\right]}f\left(x\right)=\frac{1-8\ln2}{2};x=1\\Min_{x\in\left[-2;1\right]}f\left(x\right)=\frac{1-16\ln2}{2};x=-1\end{cases}\)

25 tháng 9 2021

đây là đáp án

16 tháng 5 2016

1. \(f\left(x\right)=e^{2-3x}\) trên đoạn \(\left[0;2\right]\)

Ta có : 

              \(f'\left(x\right)=-3e^{2-3x}< 0\) với \(x\in R\Rightarrow\) hàm số nghịch biến trên đoạn \(\left[0;2\right]\)

Với \(0\le x\le2\Leftrightarrow f\left(0\right)\ge f\left(x\right)\ge f\left(2\right)\Leftrightarrow e^2\ge f\left(x\right)\ge\frac{1}{e^4}\)

                     \(\Leftrightarrow\begin{cases}Max_{x\in\left[0;2\right]}f\left(x\right)=e^2;x=0\\Min_{x\in\left[0;2\right]}f\left(x\right)=\frac{1}{e^4};x=2\end{cases}\)

 

2. \(f\left(x\right)=e^{\sqrt{1-x^2}}\) trên đoạn \(\left[-1;1\right]\)

Ta có : 

               \(f'\left(x\right)=\frac{-x}{\sqrt{1-x^2}}e^{\sqrt{1-x^2}}=0\Leftrightarrow x=0\in\left[-1;1\right]\)

Mà : \(\begin{cases}f\left(-1\right)=1\\f\left(0\right)=e\\f\left(1\right)=1\end{cases}\) \(\Leftrightarrow\begin{cases}Max_{x\in\left[-1;1\right]}f\left(x\right)=e;x=0\\Min_{x\in\left[-1;1\right]}f\left(x\right)=1;x=\pm1\end{cases}\)

 

21 tháng 4 2017

\(f'\left(x\right)=1-\dfrac{9}{x^2}\)

\(f'\left(x\right)=0\Rightarrow x=\pm3\)

\(f''\left(x\right)=\dfrac{18}{x^3}\) \(\left\{{}\begin{matrix}f''\left(3\right)>0\\f''\left(-3\right)< 0\end{matrix}\right.\) vậy f(x) đạt cực tiểu tại x=3 trong khoảng đang xét hàm liên tục [2,4]

\(f\left(3\right)=3+\dfrac{9}{3}=6\)

\(\left\{{}\begin{matrix}f\left(2\right)=2+\dfrac{9}{2}=\dfrac{13}{2}\\f\left(4\right)=4+\dfrac{9}{4}=\dfrac{25}{4}< \dfrac{13}{2}\end{matrix}\right.\)

kết luận

GTLN f(x) trên đoạn [2,4] =\(\dfrac{13}{2}\)

GTNN f(x) trên đoạn [2,4] = \(6\)

4 tháng 6 2018

\(f'\left(x\right)=1-\dfrac{9}{x^2}=\dfrac{x^2-9}{x^2}\)

\(f'\left(x\right)=0\Leftrightarrow x=\pm3\)

Hàm số nghịch biến trong các khoảng (-3; 0), (0; 3) và đồng biến trong các khoảng \(\left(-\infty;3\right)\left(3;+\infty\right)\)

Ta có bảng biến thiên:
x \(-\infty;-3;0\) \(2;3;4;+\infty\)
f'(x) + 0 - - - 0 + +
f(x) yCĐ yCT +∞

Ta có: \(\left[2;4\right]\subset\left(0;+\infty\right);\left[{}\begin{matrix}f\left(2\right)=6,5\\f\left(3\right)=6\\f\left(4\right)=6,25\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\min\limits_{\left[2;4\right]}f\left(x\right)=f\left(3\right)=6\\\max\limits_{\left[2;4\right]}f\left(x\right)=f\left(2\right)=6,5\end{matrix}\right.\)

14 tháng 8 2020

Tức là max = 5 tại x \(=\) -1 đấy bạn !!!

NV
12 tháng 8 2020

Bạn coi lại đề, GTLN của hàm số trên đoạn \(\left[-1;2\right]\) khi \(x=-1\) bằng 5 là sao nhỉ?