\(\frac{x+y}{t+z}=\frac{2018}{2019}\)   và   \(2019y=2018...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2019

giúp mình với

3 tháng 1 2019

\(\frac{x+y}{t+z}=\frac{2018}{2019}\Rightarrow\left(x+y\right).2019=\left(t+z\right).2018\)

\(\Rightarrow2019x+2019y=2018t+2018z\)

\(\Rightarrow2019x+2018z=2018t+2018z\)

\(\Rightarrow2019x=2018t\Rightarrow\frac{x}{t}=\frac{2018}{2019}\)

10 tháng 12 2017

s có 2 z v bn

3 tháng 3 2017

a, A lớn nhất khi 7x la nguyên dương nho nhất

\(\Rightarrow7x=1\)

\(\Rightarrow x=\frac{1}{7}\)

\(b,B=\frac{10+4-x}{4-x}\)

\(B=\frac{10}{4-x}+1\)

b lon nhat khi 4-xla nguyen duong nho nhat

\(\Rightarrow4-x=1\)

\(\Rightarrow x=4-1=3\)

\(c,C=\frac{27-2x}{12-x}=\frac{3+24-2x}{12-x}=\frac{3}{12-x}+2\)

c lon nhat khi 12-x la nguyen duong nho nhat

\(\Rightarrow12-x=1\Rightarrow x=11\)

3 tháng 3 2017

a)x=1

b)x=3

c)x=11

16 tháng 12 2018

Ta có:  (đk: x,y,z,t > 0)

 \(M>\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}=\frac{x+y+z+t}{x+y+z+t}=1\)

Vậy \(M>1^{\left(đpcm\right)}\)

26 tháng 9 2017

ngu quá

5 tháng 11 2017

Áp dụng tính chất dãy tỉ số bằng nhau do đã có \(y+z+t\ne0\), sau đó nhân dãy đã cho vs nhau. cái kia mũ 3 lên

5 tháng 11 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{t}=\left(\frac{x+y+z}{y+z+t}\right)^3=\frac{x+y+z}{y+z+t}=\frac{x-y+z}{y-z+t}=\frac{x+y-z}{y+z-t}\)

=> \(\frac{x+y+z}{y+z+t}=\frac{x}{t}\) (1)

=> \(\frac{x-y+z}{y-z+t}=\frac{x}{t}\) (2)

=> \(\frac{x+y-z}{y+z-t}=\frac{x}{t}\) (3)

Từ (1);(2) và (3) => đpcm

14 tháng 12 2017

bạn ơi đề thiếu

3 tháng 9 2019

 | x+1|=0                                        b) sai đè nha bn             

=> x+1=0                                                                                

=> x=0-1

=>x=(-1)

3 tháng 9 2019

2

b) \(\frac{50}{51}>\frac{50}{58};\frac{50}{58}>\frac{49}{58}\)=> \(\frac{50}{51}>\frac{49}{58}\)

c)  vì \(\frac{2019}{2018}>1\)=> \(\frac{2019+1}{2018+1}=\frac{2020}{2019}< \frac{2019}{2018}\)

2 tháng 10 2020

Ta có: \(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}=1\)

\(\Leftrightarrow\left(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}\right)^2=1\)

\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{yz}-\frac{1}{xy}-\frac{1}{zx}\right)=1\)

\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\cdot\frac{x-y-z}{xyz}=1\)

\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1\)