Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Ta có
Do đó đường thẳng y= 2m- n là TCN
+ Mà y= 0 là tiệm cận ngang của ĐTHS nên 0 = 2m- n
+ Vì x= 0 là TCĐ của ĐTHS nên x= 0 là nghiệm của phương trình x2+ mx+n- 6= 0
Vậy 2 m - n = 0 n = 6 ⇒ m = 3 n = 6 ⇒ m + n = 9
Chọn C.
1.
\(\lim\limits_{x\rightarrow\infty}\frac{3x-2}{x+1}=3\Rightarrow y=3\) là tiệm cận ngang
2.
\(\lim\limits_{x\rightarrow2}\frac{-2x}{x-2}=\infty\Rightarrow x=2\) là tiệm cận đứng
3.
\(\lim\limits_{x\rightarrow\infty}\frac{x-2}{x^2-1}=0\Rightarrow y=0\) là tiệm cận ngang
4.
\(\lim\limits_{x\rightarrow\infty}\frac{x-1}{x^2-x}=0\Rightarrow y=0\) là tiệm cận ngang
\(\lim\limits_{x\rightarrow0}\frac{x-1}{x^2-x}=\infty\Rightarrow x=0\) là tiệm cận đứng
\(\lim\limits_{x\rightarrow1}\frac{x-1}{x^2-x}=1\) hữu hạn nên \(x=1\) ko phải tiệm cận đứng
ĐTHS có 2 tiệm cận
1.
Để ĐTHS có 2 tiệm cận thì \(m\ne-3\)
Khi đó:
\(\lim\limits_{x\rightarrow\infty}\frac{mx-3}{x+1}=m\Rightarrow y=m\) là tiệm cận ngang
\(\lim\limits_{x\rightarrow-1}\frac{mx-3}{x+1}=\infty\Rightarrow x=-1\) là tiệm cận đứng
Giao điểm 2 tiệm cận có tọa độ \(A\left(-1;m\right)\)
Để A thuộc \(y=x+3\Leftrightarrow m=-1+3\Rightarrow m=2\)
2.
\(\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{x-2}}{x^2-4}=0\Rightarrow y=0\) là 1 TCN
\(\lim\limits_{x\rightarrow2}\frac{\sqrt{x-2}}{x^2-4}=\infty\Rightarrow x=2\) là 1 TCĐ
\(x=-2\) ko thuộc TXĐ nên ko phải là tiệm cận
Vậy ĐTHS có 2 tiệm cận
3.
Để ĐTHS có đúng 2 TCĐ \(\Leftrightarrow x^2-mx+5=0\) có 2 nghiệm pb khác 1
\(\Leftrightarrow\left\{{}\begin{matrix}6-m\ne0\\\Delta=m^2-20>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne6\\\left[{}\begin{matrix}m\ge2\sqrt{5}\\m\le-2\sqrt{5}\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow m=\left\{5;-5\right\}\)
Đề bài sai hoặc đáp án sai
Xét \(M\left(m;1+\frac{5}{m-3}\right)\) thuộc đồ thị đã cho
Theo yêu cầu bài tài <=> \(\left|m-3\right|=\left|\frac{5}{m-3}\right|\Leftrightarrow m=3\pm\sqrt{5}\)
Vậy \(M\left(3\pm\sqrt{5};1\pm\sqrt{5}\right)\)
b) Tiệm cận đứng là đường thẳng \(x=3\)
Tiệm cận ngang là đường thẳng \(y=1\)
Lời giải:
Câu 1:
Lưu ý tiệm cận đứng là \(x=\frac{3}{2}\) chứ không phải \(y=\frac{3}{2}\)
Ta có \(y=\sqrt{4x^2+mx+1}-(2x-1)=\frac{4x^2+mx+1-(2x-1)^2}{\sqrt{4x^2+mx+1}+2x-1}\)
\(\Leftrightarrow y=\frac{x(m+4)}{\sqrt{4x^2+mx+1}+2x-1}\)
Để ĐTHS có tiệm cận đứng \(x=\frac{3}{2}\) thì pt \(\sqrt{4x^2+mx+1}+2x-1=0\) phải có nghiệm là \(x=\frac{3}{2}\)
\(\Leftrightarrow \sqrt{10+\frac{3m}{2}}+2=0\) (vô lý vì vế trái luôn lớn hơn 0)
Do đó không tồn tại m thỏa mãn.
Câu 2:
Để đths có đúng một tiệm cận đứng thì có thể xảy 2 TH sau:
TH1: PT \(x^2-3x-m=0\) có nghiệm kép
\(\Leftrightarrow \Delta=9+4m=0\Leftrightarrow m=-\frac{9}{4}\)
\(y=\frac{x-1}{x^2-3x+\frac{9}{4}}=\frac{x-1}{(x-\frac{3}{2})^2}\) có TCĐ là \(x=\frac{3}{2}\) (thỏa mãn)
TH2: PT \(x^2-3x-m=0\) có hai nghiệm phân biệt trong đó có một nghiệm \(x=1\)
\(\Leftrightarrow 1^2-3.1-m=0\Leftrightarrow m=-2\)
Khi đó, \(y=\frac{x-1}{x^2-3x+2}=\frac{x-1}{(x-2)(x-1)}=\frac{1}{x-2}\) có TCĐ \(x=2\) (thỏa mãn)
Vậy tổng giá trị của $m$ thỏa mãn là:
\(\sum =\frac{-9}{4}+(-2)=\frac{-17}{4}\)
\(y=\frac{2x+1}{x-1}=\frac{2x-2+3}{x-1}=2+\frac{3}{x-1}\)
Để y nguyên \(\Rightarrow\frac{3}{x-1}\) nguyên \(\Rightarrow x-1=Ư\left(3\right)=\left\{-3;-1;1;3\right\}\)
\(\Rightarrow x=\left\{-2;0;2;4\right\}\) \(\Rightarrow y=\left\{1;-1;5;3\right\}\)
Do y nguyên dương nên ta chỉ có các điểm thỏa mãn là:
\(\left(-2;1\right);\left(2;5\right);\left(4;3\right)\)
Tiệm cận đứng: \(x=1\) ; tiệm cận ngang \(y=2\)
\(\Rightarrow\) Có 2 điểm \(\left(-2;1\right)\) và \(\left(4;3\right)\) thỏa mãn k/c đến tiệm cận đứng gấp 3 khoảng cách đến tiệm cận ngang
Chọn B
Phương pháp:
Sử dụng đồ thị hàm số nhận đường thẳng y = a c làm TCN và đường thẳng x = - d c làm TCĐ.
Từ đó tìm được m,n => S
Cách giải:
Đồ thị hàm số y = ( m - 2 n - 3 ) x + 5 x - m - n nhận đường thẳng y = m-2n-3 làm tiệm cận ngang và đường thẳng x = m+n làm tiệm cận đứng.
Từ gt ta có
Chọn C.
Ta có:
Nên để đồ thị hàm số nhận trục Ox làm tiệm cận ngang thì n - 3 = 0 ⇔ n = 3
Khi đó hàm số đã cho trở thành
ta có: không xác định khi m + 3 = 0 ⇔ m = -3
Vậy ta có: m - 2n = -3 - 2.3 = -9