K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2017

Chọn đáp án A

Phương trình đường thẳng đi qua hai điểm cực trị là

Vì I 0 ; 1 ∈ A B

Khi đó  P = a b c + 2 a b + 3 c = 9 c 2 + 12 c - 18

⇒ P = 3 c + 2 2 - 22 ≥ - 22

Dấu “=” xảy ra  ⇔ c = - 2 3

3 tháng 10 2015

vì (C) đi qua điểm A nên tọa độ điểm A thỏa mãn pt \(y=\frac{ax^2-bx}{x-1}\) ta có \(\frac{5}{2}=\frac{a+b}{-2}\Rightarrow a+b=-5\)

vì tiếp tuyến của đồ thị tại điểm O có hệ số góc =-3 suy ra y'(O)=-3

ta có \(y'=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\) ta có y'(O)=b=-3 suy ra a=-2

vậy ta tìm đc a và b

4 tháng 2 2016

với a<b<c<d nha

 

14 tháng 3 2017

ta có \(\left|x-a\right|+\left|x-b\right|+\left|x-c\right|+\left|x-d\right|\ge\left|\left(x-a\right)+\left(x-b\right)+\left(c-x\right)+\left(d-x\right)\right|=\left|c+d-a-b\right|=c+d-a-b\)( do a<b<c<d => c-a>0 và d-b>0)

vậy Min A= c+d-a-b

5 tháng 10 2015

hoành độ giao điểm là nghiệm của pt

\(x^3-3mx^2+3\left(2m-1\right)x+1=2mx-4m+3\Leftrightarrow x^3-3mx^2+4mx-3x-2+4m=0\Leftrightarrow x^3-3x-2-m\left(3x^2-4x+4\right)=0\)

giải hệ pt ta có \(C_m\) luôn đi qua điểm A là nghiệm của hệ pt sau

\(\begin{cases}3x^2-4x+4=0\\x^3-3x-2=0\end{cases}\)

ta đc điều phải cm

27 tháng 10 2019

.

4 tháng 2 2019

Đáp án A

Xét hệ phương trình

f ' ( x ) = 3 x 2 + 6 a x + 3 = 0 ( * ) g ' ( x ) = 3 x 2 + 6 b x + 9 = 0 ⇒ 6 x ( a − b ) = 6 ⇔ x = 1 a − b .  

Áp dụng công thức nghiệm do phương trình (*) ta có x = − a ± a 2 − 1  với a ∈ ( − ∞ ; − 1 ) ∪ 1 ; + ∞  .

*Trường hợp 1: x = − a + a 2 − 1 .  

Ta có

1 a − b = − a + a 2 − 1 ⇔ b = a + 1 a − a 2 − 1 = 2 a + a 2 − 1  

Suy ra  

P = a + 2 b = a + 4 a + 2 a 2 − 1 ≥ 5 a + 2 a 2 − 1

Xét hàm số

f ( x ) = 5 x + 2 x 2 − 1 ; x ∈ − ∞ ; − 1 ∪ 1 ; + ∞ .  

Đạo hàm

f ' x = 5 + 2 x x 2 − 1 ; f ' x = 0 ⇔ 5 x 2 − 1 = − 2 x ⇔ x ≤ 0 25 x 2 − 1 = 4 x 2  

⇔ x = − 5 21   (thỏa mãn).

Lại có f − 5 21 = − 21 ⇒ P ≥ 21  (lập bảng biến thiên của hàm số f x ).

*Trường hợp 2:Tương tự, ta tìm được   P ≥ 21 .

2 tháng 10 2015

vì đồ thị hàm số đi qua điểm \(A\left(-1;\frac{5}{2}\right)\) nên tọa độ của A thỏa mãn phương trình sau: \(\frac{a+b}{-2}=\frac{5}{2}\Rightarrow a+b=-5\)(*)

ta tính y' có:

\(y'=\frac{\left(2ax-b\right)\left(x-1\right)-\left(ax^2-bx\right)}{\left(x-1\right)^2}=\frac{2ax^2-2ax-bx+b-ax^2+bx}{\left(x-1\right)^2}=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\)

vì hệ số góc của tiếp tuyến tại điểm O(0;0) bằng 3 nên \(y'\left(O\right)=\frac{b}{\left(0-1\right)^2}=-3\Rightarrow b=-3\)

thay b=-3 vào (*) ta tìm được a=-2

vậy a=-2;b=-3

21 tháng 7 2017

9 tháng 7 2018

Đáp án A.

Đồ thị nhận x = 2  là tiệm cận đứng ⇒ 2 + b = 0 ⇔ b = − 2.

Đồ thị đi qua  4 ; 2 ⇔ 2 = a 4 − 4 4 + b ⇒ 2 = 4 a − 4 4 − 2 ⇒ a = 2.   ⇒ a + b = 0.

3 tháng 2 2016

các thầy cô, anh chị nào biết giải giùm em nhé

 

3 tháng 2 2016

nhanh lên hộ am với ạ