Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đồ thị hàm số vuông góc với đường thẳng y = 4x + 1 nên 4.a = -1 hay
Đồ thị hàm số đi qua điểm N(4; -1) nên -1 = a.4 + b hay b = 0
Suy ra P = ab = 0
Chọn A.
Đồ thị hàm số song song với đường thẳng y = 2x + 1 nên a = 2.
Đồ thị hàm số đi qua điểm M(1; 4) nên 4 = a.1 + b suy ra b = 2
Hay S = a + b = 4
Chọn A.
Lời giải:
$4x-y+3=0\Leftrightarrow y=4x+3$
ĐTHS $y=ax+b$ vuông góc với ĐTHS $y=4x+3$
$\Rightarrow a.4=-1\Rightarrow a=\frac{-1}{4}$
Mà ĐTHS $y=ax+b$ đi qua điểm $N(4,-1)$ nên:
$y_N=ax_N+1\Leftrightarrow -1=a.4+b\Leftrightarrow b=-1-a.4=-1-(-1)=0$
Vậy $a=\frac{-1}{4}, b=0$ nên $P=ab=0$
(P) có đỉnh I(1;1) và đi qua A(2;3) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{-b}{2a}=1\\-\dfrac{b^2-4ac}{4a}=1\\a\cdot2^2+b\cdot2+c=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\b^2-4ac=-4a\\4a+2b+c=3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}b=-2a\\4a+2\cdot\left(-2a\right)+c=3\\b^2-4ac=-4a\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}c=3\\b=-2a\\4a^2-12a+4a=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=3\\4a^2-8a=0\\b=-2a\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}c=3\\4a\left(a-2\right)=0\\b=-2a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=3\\\left[{}\begin{matrix}a=0\left(loại\right)\\a=2\left(nhận\right)\end{matrix}\right.\\b=-2\cdot2=-4\end{matrix}\right.\)
=>c=3;a=2;b=-4
=>\(S=3^2+2^2+\left(-4\right)^2=25+4=29\)
=>Chọn C
Hệ số góc bằng – 2 suy ra a = -2
Đồ thị hàm số đi qua điểm A(-3; 1) suy ra -3a + b = 1 hay b = -5
Vậy P = ab = 10
Chọn B.
a: Vì (d) đi qua A(3;-4) và (0;2) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}3a+b=-4\\b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=2\end{matrix}\right.\)
b: vì (d)//y=-4x+4 nên a=-4
Vậy:(d): y=-4x+b
Thay x=-2 và y=0 vào (d), ta được:
b+8=0
hay b=-8
Đáp án A