Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Phân số đầu nhân 2.
_ Phân số thứ 2 nhân 3, p/s thứ 3 giữ nguyên.
_ Lấy phân số đầu + p/s thứ 2 - p/s thứ 3.
_ Dựa vào dãy tỉ số bằng nhau tìm x, y, z.
2) \(x-y-z=0\Rightarrow x=y+z\)
Khi đó thay vào B được:
\(B=\left(1-\dfrac{z}{y+z}\right)\left(1-\dfrac{y+z}{y}\right)\left(1+\dfrac{y}{z}\right)\)
\(=\dfrac{y}{y+z}.\dfrac{z}{y}.\dfrac{y+z}{z}\)
\(=1\)
Vậy B = 1.
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{3x+2}{4}=\dfrac{2y+2}{5}=\dfrac{3x+2y+4}{4,5x}=\dfrac{3x+2+2y+2-3x-2y-4}{4+5-4,5x}=\dfrac{0}{9-4,5x}=0\)
\(\Rightarrow\left\{{}\begin{matrix}3x+2=0\\2y+2=0\\3x+2y+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=-2\\2y=-2\\3x+2y=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{3}\\y=-1\end{matrix}\right.\)
Áp dụng t/c dãy tỉ số bằng nhau :
\(\dfrac{3x+2}{4}=\dfrac{2y+2}{5}=\dfrac{3x+2+2y+2}{4+5}=\dfrac{3x+2y+4}{9}\)
Mà \(\dfrac{3x+2}{4}=\dfrac{2y+2}{5}=\dfrac{3x+2y+4}{4,5x}\)
=> \(\dfrac{3x+2y+4}{9}=\dfrac{3x+2y+4}{4,5x}\)
=> 9 = 4,5x
=> x = 9 : 4,5 = 2
Ta có : \(\dfrac{3x+2}{4}=\dfrac{2y+2}{5}\)
\(\dfrac{3.2+2}{4}=\dfrac{2y+2}{5}\) ( Thay x = 2)
\(2=\dfrac{2y+2}{5}\)
=> 2y = 2.5 - 2 = 8
=> y = 8 : 2 = 4
Vậy x = 2, y = 4
Ta có :
\(\dfrac{x+y-z}{z}=\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}\\ \Leftrightarrow\dfrac{x+y+z}{z}=\dfrac{x+y+z}{x}=\dfrac{x+y+z}{y}\left(cùngcộngthêm2\right)\)
TH1: \(x+y+z\ne0\)
\(\Rightarrow x=y=z\)
\(\Rightarrow P=\left(1+1\right)\left(1+1\right)\left(1+1\right)\\ =2\cdot2\cdot2=8\)
TH2: \(x+y+z=0\Rightarrow\left\{{}\begin{matrix}x=-\left(y+z\right)\\y=-\left(x+z\right)\\z=-\left(y+x\right)\end{matrix}\right.\)(*)
\(\Rightarrow P=\left(1+\dfrac{-\left(y+z\right)}{y}\right)\left(1+\dfrac{-\left(z+x\right)}{z}\right)\left(1+\dfrac{-\left(x+y\right)}{z}\right)\\ =\left(1-1-\dfrac{z}{y}\right)\left(1-1-\dfrac{x}{z}\right)\left(1-1-\dfrac{y}{z}\right)\\ =\left(-\dfrac{z}{y}\right)\left(-\dfrac{x}{z}\right)\left(-\dfrac{y}{z}\right)\\ =-1\)
Vậy P=8 hoặc P=-1
\(\dfrac{y+z+t-nx}{x}=\dfrac{z+t+x-ny}{y}=\dfrac{t+x+y-nz}{z}=\dfrac{x+y+z-nt}{t}\)
\(=\dfrac{y+z+t-nx+z+t+x-ny+t+x+y-nz+x+y+z-nt}{x+y+z+t}\)
\(=\dfrac{3x+3y+3z+3t-n\left(x+y+z+t\right)}{x+y+z+t}\)
\(=\dfrac{3\left(x+y+z+t\right)-n\left(x+y+z+t\right)}{x+y+z+t}=\dfrac{\left(3-n\right)\left(x+y+z+t\right)}{x+y+z+t}=3-n\)
Nên \(\left\{{}\begin{matrix}y+z+t-nx=3x-nx\\z+t+x-ny=3y-ny\\t+x+y-nz=3z-nz\\x+y+z-nt=3t-nt\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y+z+t=3x\\z+t+x=3y\\t+x+y=3z\\x+y+z=3t\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{y+z+t}{3}\\y=\dfrac{z+t+x}{3}\\z=\dfrac{t+x+y}{3}\\t=\dfrac{x+y+z}{3}\end{matrix}\right.\)
Thay vào \(P\) ta có:
\(P=x+2y-3z+t\)
\(P=\dfrac{y+z+t}{3}+\dfrac{2\left(z+t+x\right)}{3}-\dfrac{3\left(t+x+y\right)}{3}+\dfrac{x+y+z}{3}\)
\(P=\dfrac{y+z+t+2z+t+x-3t-3x-3y+x+y+z}{3}\)
\(P=\dfrac{\left(x+x-3x\right)+\left(y+y-3y\right)+\left(z+z+2z\right)+\left(t+t-3t\right)}{3}\)
\(P=\dfrac{-x-y-z+4t}{3}\)
\(P=\dfrac{-\left(x+y+z+t\right)+5t}{3}\)
\(P=\dfrac{-2012+5t}{3}\)
Tốn sức quá T^T
\(\Leftrightarrow3x+9y=4x-8y\)
\(\Leftrightarrow x=17y\)
hay \(\dfrac{x}{y}=\dfrac{17}{1}\)
\(\Leftrightarrow3\left(x+3y\right)=4\left(x-2y\right)\\ \Leftrightarrow3x+9y=4x-8y\\ \Leftrightarrow x=17y\Leftrightarrow\dfrac{x}{y}=17\)