\(a>b>0\) và \(ab=2\). Tìm GTNN của 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2021

Ta có \(B=\frac{a^2+b^2}{a-b}=\frac{a^2+b^2-4+4}{a-b}=\frac{a^2+b^2-2ab}{a-b}+\frac{4}{a-b}=\left(a-b\right)+\frac{4}{a-b}\)

Áp dụng bất đẳng thức Cauchy cho 2 số không âm ta có : 

\(B=\left(a-b\right)+\frac{4}{a-b}=2\sqrt{\left(a-b\right).\frac{4}{a-b}}=4\)

Dấu "=" xảy ra <=> \(a-b=\frac{4}{a-b}\)

Kết hợp giả thiết => \(\hept{\begin{cases}a=\frac{\sqrt{12}+2}{2}\\b=\frac{\sqrt{12}-2}{2}\end{cases}}\)

25 tháng 9 2019

trả lời lẹ cho tui cấy

2 tháng 11 2019

Ta có: \(\left(x-y\right)^2\ge0\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\Rightarrow x^2+y^2\ge2xy\)

Tương tự: \(y^2+z^2\ge2yz\)\(x^2+z^2\ge2xz\)

Cộng từng vế của các BDDT trên:

\(2\left(xz+yz+xy\right)\le2\left(x^2+y^2+z^2\right)\)

\(\Leftrightarrow xy+yz+xz\le x^2+y^2+z^2\)

\(\Leftrightarrow3xy+3yz+3xz\le x^2+y^2+z^2+2xy+2yz+2xz\)

\(\Leftrightarrow3xy+3yz+3xz\le\left(x+y+z\right)^2\)

\(\Leftrightarrow3xy+3yz+3xz\le3^2=9\)

\(\Leftrightarrow xy+yz+xz\le3\)

Vậy \(D_{max}=3\Leftrightarrow x=y=z\)

2 tháng 11 2019

Áp dụng BĐT Cauchy - Schwarz:

\(\left(x^2+y^2+z^2\right)\left(1+1+1\right)\)

\(=\left(x^2+y^2+z^2\right)\left(1^2+1^2+1^2\right)\ge\left(x+y+z\right)^2\)

\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge3^2=9\)

\(\Rightarrow x^2+y^2+z^2\ge3\)

Vậy \(C_{min}=3\Leftrightarrow x=y=z=1\)

2 tháng 11 2019

1.

Vì x>0 nên \(A=\frac{16x+4+\frac{1}{x}}{2}\)

Áp dụng bất đẳng thức Côsi cho 2 số dương

\(16x+\frac{1}{x}\ge2\sqrt{16x.\frac{1}{x}}=2.4=8\). Dấu "=" khi \(16x=\frac{1}{x}\Rightarrow x^2=\frac{1}{16}\Rightarrow x=\frac{1}{4}\)

\(A=\frac{16x+4+\frac{1}{x}}{2}\ge\frac{8+4}{2}=6\)

Vậy GTNN của A là 6 khi \(x=\frac{1}{4}\)

2.

\(B=\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}=\frac{10}{ab}\)

Ta có: \(10=a+b\ge2\sqrt{ab}\Rightarrow\sqrt{ab}\le5\Rightarrow ab\le25\). Dấu "=" khi a = b = 5

\(\Rightarrow B=\frac{10}{ab}\ge\frac{10}{25}=\frac{2}{5}\)

Vậy GTNN của B là \(\frac{2}{5}\)khi a = b = 5

30 tháng 8 2020

Chứng minh bđt phụ: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)   (1)

Ta có:\(\frac{a+b}{ab}\ge\frac{4}{a+b}\)\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)( luôn đúng với mọi \(a,b>0\))

Đặt \(A=\frac{1}{a^2+b^2}+\frac{5}{ab}+ab\)

\(\Rightarrow A=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{9}{2ab}+ab\)

Áp dụng bđt (1) ta được: \(\frac{1}{a^2+b^2}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}=\frac{4}{\left(a+b\right)^2}=\frac{4}{4^2}=\frac{1}{4}\)

Áp dụng bđt Cô-si với \(\frac{9}{2ab}+ab\)ta được: \(\frac{9}{2ab}+ab\ge2\sqrt{\frac{9}{2ab}.ab}=2.\sqrt{\frac{9}{2}}=\sqrt{4.\frac{9}{2}}=\sqrt{18}=3\sqrt{2}\)

\(\Rightarrow A\ge\frac{1}{4}+3\sqrt{2}\)

Vậy \(minA=3\sqrt{2}+\frac{1}{4}\)

11 tháng 7 2018

ai tích mình mình tích lại cho

29 tháng 4 2017

545454785

564657431

68567545

4654856

865449466

2 tháng 12 2019

dăt tinh roi tinh

173,44:32    112,56:28   155,9:15   

b 372,96:3   857,5:35      431,25:125

19 tháng 11 2019

\(\sqrt{2a^2+ab+2b^2}=\sqrt{\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\ge\frac{5}{4}\left(a+b\right)\)

Tương tự cộng vế theo vế thì 

\(M\ge\frac{5}{4}\left(2a+2b+2c\right)=\frac{5}{2}\left(a+b+c\right)=\frac{5}{2}\cdot2019\)

Dấu "=" xảy ra tại \(a=b=c=\frac{2019}{3}\)

bài 4 có trên mạng nha chị.tí e làm cách khác

bài 5 chị tham khảo bđt min cop ski r dùng svác là ra ạ.giờ e coi đá bóng,coi xong nghĩ tiếp ạ.

19 tháng 11 2019

e nhầm đoạn này r

\(\sqrt{2a^2+ab+2b^2}\ge\frac{\sqrt{5}}{2}\left(a+b\right)\) rồi cộng lại thì 

\(M\ge\frac{\sqrt{5}}{2}\left(2a+2b+2c\right)=\sqrt{5}\cdot2019\) ạ

Chắc lần này sẽ không nhầm nhưng hướng là thế ạ.