Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(x-y\right)^2\ge0\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\Rightarrow x^2+y^2\ge2xy\)
Tương tự: \(y^2+z^2\ge2yz\); \(x^2+z^2\ge2xz\)
Cộng từng vế của các BDDT trên:
\(2\left(xz+yz+xy\right)\le2\left(x^2+y^2+z^2\right)\)
\(\Leftrightarrow xy+yz+xz\le x^2+y^2+z^2\)
\(\Leftrightarrow3xy+3yz+3xz\le x^2+y^2+z^2+2xy+2yz+2xz\)
\(\Leftrightarrow3xy+3yz+3xz\le\left(x+y+z\right)^2\)
\(\Leftrightarrow3xy+3yz+3xz\le3^2=9\)
\(\Leftrightarrow xy+yz+xz\le3\)
Vậy \(D_{max}=3\Leftrightarrow x=y=z\)
Áp dụng BĐT Cauchy - Schwarz:
\(\left(x^2+y^2+z^2\right)\left(1+1+1\right)\)
\(=\left(x^2+y^2+z^2\right)\left(1^2+1^2+1^2\right)\ge\left(x+y+z\right)^2\)
\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge3^2=9\)
\(\Rightarrow x^2+y^2+z^2\ge3\)
Vậy \(C_{min}=3\Leftrightarrow x=y=z=1\)
1.
Vì x>0 nên \(A=\frac{16x+4+\frac{1}{x}}{2}\)
Áp dụng bất đẳng thức Côsi cho 2 số dương
\(16x+\frac{1}{x}\ge2\sqrt{16x.\frac{1}{x}}=2.4=8\). Dấu "=" khi \(16x=\frac{1}{x}\Rightarrow x^2=\frac{1}{16}\Rightarrow x=\frac{1}{4}\)
\(A=\frac{16x+4+\frac{1}{x}}{2}\ge\frac{8+4}{2}=6\)
Vậy GTNN của A là 6 khi \(x=\frac{1}{4}\)
2.
\(B=\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}=\frac{10}{ab}\)
Ta có: \(10=a+b\ge2\sqrt{ab}\Rightarrow\sqrt{ab}\le5\Rightarrow ab\le25\). Dấu "=" khi a = b = 5
\(\Rightarrow B=\frac{10}{ab}\ge\frac{10}{25}=\frac{2}{5}\)
Vậy GTNN của B là \(\frac{2}{5}\)khi a = b = 5
Chứng minh bđt phụ: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) (1)
Ta có:\(\frac{a+b}{ab}\ge\frac{4}{a+b}\)\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)( luôn đúng với mọi \(a,b>0\))
Đặt \(A=\frac{1}{a^2+b^2}+\frac{5}{ab}+ab\)
\(\Rightarrow A=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{9}{2ab}+ab\)
Áp dụng bđt (1) ta được: \(\frac{1}{a^2+b^2}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}=\frac{4}{\left(a+b\right)^2}=\frac{4}{4^2}=\frac{1}{4}\)
Áp dụng bđt Cô-si với \(\frac{9}{2ab}+ab\)ta được: \(\frac{9}{2ab}+ab\ge2\sqrt{\frac{9}{2ab}.ab}=2.\sqrt{\frac{9}{2}}=\sqrt{4.\frac{9}{2}}=\sqrt{18}=3\sqrt{2}\)
\(\Rightarrow A\ge\frac{1}{4}+3\sqrt{2}\)
Vậy \(minA=3\sqrt{2}+\frac{1}{4}\)
dăt tinh roi tinh
173,44:32 112,56:28 155,9:15
b 372,96:3 857,5:35 431,25:125
\(\sqrt{2a^2+ab+2b^2}=\sqrt{\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\ge\frac{5}{4}\left(a+b\right)\)
Tương tự cộng vế theo vế thì
\(M\ge\frac{5}{4}\left(2a+2b+2c\right)=\frac{5}{2}\left(a+b+c\right)=\frac{5}{2}\cdot2019\)
Dấu "=" xảy ra tại \(a=b=c=\frac{2019}{3}\)
bài 4 có trên mạng nha chị.tí e làm cách khác
bài 5 chị tham khảo bđt min cop ski r dùng svác là ra ạ.giờ e coi đá bóng,coi xong nghĩ tiếp ạ.
Ta có \(B=\frac{a^2+b^2}{a-b}=\frac{a^2+b^2-4+4}{a-b}=\frac{a^2+b^2-2ab}{a-b}+\frac{4}{a-b}=\left(a-b\right)+\frac{4}{a-b}\)
Áp dụng bất đẳng thức Cauchy cho 2 số không âm ta có :
\(B=\left(a-b\right)+\frac{4}{a-b}=2\sqrt{\left(a-b\right).\frac{4}{a-b}}=4\)
Dấu "=" xảy ra <=> \(a-b=\frac{4}{a-b}\)
Kết hợp giả thiết => \(\hept{\begin{cases}a=\frac{\sqrt{12}+2}{2}\\b=\frac{\sqrt{12}-2}{2}\end{cases}}\)