Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
p =2 => 8p-1=15 là hợp số , loại
p=3 =>8p-1 =23 là số nguyên tố, chọn =>8p+1=25 là hớp số
p>3=> p có dạng 3k+1, 3k+2( k thuộc N*)
p= 3k+2=> 8p-1=24k + 15, là hợp số=> loại
=> p=3k+1=> 8p+1=24k+9
Vậy 8p+1 là hợp số
Chú ý: thử trường hợp 3k+2 trước để loại
a)
số nguyên tố p phải lớn hơn 2 (vì 2 ko là tổng của 2 snt nào cả) nên là số lẻ.
ta phải có p = a + 2, p = b - 2 (chắc chắn có số 2 vì tất cả các snt lớn hơn 2 đều lẻ).
Suy ra a, p, b là 3 số lẻ liên tiếp, do đó có 1 số chia hết cho 3, suy ra số đó = 3 (vì là snt)
vậy 3 số đó là 3,5,7.
Vậy p = 7
a)
số nguyên tố p phải lớn hơn 2 (vì 2 ko là tổng của 2 snt nào cả) nên là số lẻ.
ta phải có p = a + 2, p = b - 2 (chắc chắn có số 2 vì tất cả các snt lớn hơn 2 đều lẻ).
Suy ra a, p, b là 3 số lẻ liên tiếp, do đó có 1 số chia hết cho 3, suy ra số đó = 3 (vì là snt)
vậy 3 số đó là 3,5,7.
Vậy p = 7
TH1: p=2 => \(p^{10}-1=2^{10}-1=1023\)\(⋮\)3 nên không là số nguyên tố
TH2: p>2, khi đó p là số lẻ nên \(p^{10}-1\)l là số chẵn mà \(p^{10}-1\)> p>2 nên \(p^{10}-1\)\(⋮\)2 nên là hợp số
Vậy \(p^{10}-1\)là hợp số với mọi số nguyên tố p
đáp án của mình là hợp số
Bạn xem câu hỏi của bạn đỗ thị việt huệ
nhé !
..
p10-1 = (p5)2-12 = (p5-1)(p5+1)
Nhận thấy: (p5-1) và (p5+1) là 2 số chẵn hoặc 2 số lẻ liên tiếp => có ít nhất 1 số khác 1
=> p10-1 sẽ chia hết cho ít nhất là 1 số
=> p10-1 là hợp số
là hợp số nhé bạn
là số nguyên tố