K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2021

Thôi chắc khó mỗi cái phân tích tổng trên tử thôi nhỉ :v?

Xet \(S'=1.2.3+2.3.4+3.4.5+...+n\left(n+1\right)\left(n+2\right)\)

\(\Rightarrow4S'=1.2.3.4+2.3.4.4+3.4.5.4+...+4n\left(n+1\right)\left(n+2\right)\)

\(4S'=1.2.3.4+2.3.4.\left(5-1\right)+3.4.5.\left(6-2\right)+...+4n\left(n+1\right)\left(n+2\right)\left[\left(n+3\right)-\left(n-1\right)\right]\)

\(4S'=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+...+n\left(n+1\right)\left(n+2\right)\left(n+3\right)-n\left(n+1\right)\left(n+2\right)\left(n-1\right)\)

\(\Rightarrow4S'=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\Leftrightarrow S'=\dfrac{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}{4}\)

Lai co \(n\left(n+1\right)\left(n+2\right)=n^3+3n^2+2n\) \(\Rightarrow S'=\left(1^3+2^3+...+n^3\right)+3.\left(1^2+2^2+...+n^2\right)+2\left(1+2+...+n\right)\)

Mat khac \(S''=1^2+2^2+...+n^2;S'''=1+2+3+...+n\)\(S'''=\dfrac{n\left(n+1\right)}{2}\left(toan-lop-6\right)\)

Xet \(S''=1^2+2^2+...+n^2\)

\(S_1''=1.2+2.3+3.4+...+n\left(n+1\right)\)

\(\Rightarrow3S_1''=1.2.3+2.3.3+3.4.3+...+3n\left(n+1\right)\)

\(3S_1''=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...n\left(n+1\right)\left[\left(n+2\right)-\left(n-1\right)\right]\)

\(\Rightarrow3S''_1=n\left(n+1\right)\left(n+2\right)\Leftrightarrow S''_1=\dfrac{n\left(n+1\right)\left(n+2\right)}{3}\)

lai co: \(S_1''=\left(1^2+2^2+...+n^2\right)+\left(1+2+...+n\right)=S''+S'''=S''+\dfrac{n\left(n+1\right)}{2}\)

\(\Rightarrow S''=S_1''-\dfrac{n\left(n+1\right)}{2}=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\)

\(\Rightarrow S=S'-S''-S'''=S'-3.\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}-2.\dfrac{n\left(n+1\right)}{2}=\left[\dfrac{n\left(n+1\right)}{2}\right]^2\)

\(=lim\dfrac{n^2\left(n+1\right)^2}{4\left(n^3+1\right)}=\lim\limits\dfrac{\dfrac{n^4}{n^3}}{\dfrac{4n^3}{n^3}}=\lim\limits\dfrac{n}{4}=+\infty\)

Ủa, sao ra dương vô cùng vậy ta, check lại rồi mà nhỉ, bạn xem lại đề bài coi.

undefined

Cái này là hoc247 làm sai đấy nhé, thay n=1 vô biểu thức tổng uát, 1(1+1)^2 /2 =2 nhưng 1^3 lại bằng 1 :v

30 tháng 1 2021

Vừa gõ bài xong, nhấn "Back" một phát, gõ lại từ đầu :) Mất luôn 1 tiếng

18 tháng 12 2023

\(\lim\limits\dfrac{\sqrt{2\cdot4^n+1}-2^n}{\sqrt{2\cdot4^n+1}+2^n}\)

\(=\lim\limits\dfrac{2^n\cdot\sqrt{2+\dfrac{1}{4^n}}-2^n}{2^n\cdot\sqrt{2+\dfrac{1}{4^n}}+2^n}\)

\(=\lim\limits\dfrac{\sqrt{2+\dfrac{1}{4^n}}-1}{\sqrt{2+\dfrac{1}{4^n}}+1}=\dfrac{\sqrt{2}-1}{\sqrt{2}+1}\)

\(=\dfrac{\left(\sqrt{2}-1\right)\left(\sqrt{2}-1\right)}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}=\dfrac{3-2\sqrt{2}}{2-1}=3-2\sqrt{2}\)

=>a=3; b=-2

\(a^3+b^3=3^3+\left(-2\right)^3=27-8=19\)

NV
17 tháng 1 2021

\(a=\lim\left(\dfrac{2n^3\left(5n+1\right)+\left(2n^2+3\right)\left(1-5n^2\right)}{\left(2n^2+3\right)\left(5n+1\right)}\right)\)

\(=\lim\left(\dfrac{2n^3-13n^2+3}{\left(2n^2+3\right)\left(5n+1\right)}\right)=\lim\dfrac{2-\dfrac{13}{n}+\dfrac{3}{n^3}}{\left(2+\dfrac{3}{n^2}\right)\left(5+\dfrac{1}{n}\right)}=\dfrac{2}{2.5}=\dfrac{1}{5}\)

\(b=\lim\left(\dfrac{n-2}{\sqrt{n^2+n}+\sqrt{n^2+2}}\right)=\lim\dfrac{1-\dfrac{2}{n}}{\sqrt{1+\dfrac{1}{n}}+\sqrt{1+\dfrac{2}{n}}}=\dfrac{1}{2}\)

\(c=\lim\dfrac{\sqrt{1+\dfrac{3}{n^3}-\dfrac{2}{n^4}}}{2-\dfrac{2}{n}+\dfrac{3}{n^2}}=\dfrac{1}{2}\)

\(d=\lim\dfrac{\sqrt{1-\dfrac{4}{n}}-\sqrt{4+\dfrac{1}{n^2}}}{\sqrt{3+\dfrac{1}{n^2}}-1}=\dfrac{1-2}{\sqrt{3}-1}=-\dfrac{1+\sqrt{3}}{2}\)

15 tháng 3 2022

Lim 3.4n-2.13n/5n+6.13n

NV
20 tháng 1 2021

\(a=\lim\sqrt{n^3}\sqrt{\dfrac{1}{n^3}+\dfrac{2}{n^2}-1}=\infty.\left(-1\right)=-\infty\)

\(b=\lim\left(\sqrt{n^2+2n+3}-n+n-\sqrt[3]{n^2+n^3}\right)\)

\(=\lim\dfrac{2n+3}{\sqrt{n^2+2n+3}+n}+\lim\dfrac{-n^2}{n^2+n\sqrt[3]{n^2+n^3}+\sqrt[3]{\left(n^2+n^3\right)^2}}\)

\(=\lim\dfrac{2+\dfrac{3}{n}}{\sqrt{1+\dfrac{2}{n}+\dfrac{3}{n^2}}+1}+\lim\dfrac{-1}{1+\sqrt[3]{\dfrac{1}{n}+1}+\sqrt[3]{\left(\dfrac{1}{n}+1\right)^2}}=\dfrac{2}{2}-\dfrac{1}{3}=\dfrac{2}{3}\)

\(c=\lim\dfrac{\left(\dfrac{2}{\sqrt{n}}+\dfrac{1}{n}\right)\left(\dfrac{1}{\sqrt{n}}+\dfrac{3}{n}\right)}{\left(1+\dfrac{1}{n}\right)\left(1+\dfrac{2}{n}\right)}=\dfrac{0.0}{1.1}=0\)

NV
20 tháng 1 2021

\(d=\lim\dfrac{4-3\left(\dfrac{2}{4}\right)^n}{9.\left(\dfrac{3}{4}\right)^n+\left(\dfrac{2}{4}\right)^n}=\dfrac{4}{0}=+\infty\)

\(e=\lim\dfrac{7-25\left(\dfrac{5}{7}\right)^n+3.\left(\dfrac{1}{7}\right)^n}{12.\left(\dfrac{6}{7}\right)^n-\left(\dfrac{3}{7}\right)^n+3\left(\dfrac{1}{7}\right)^n}=\dfrac{7}{0}=+\infty\)

\(f=\lim\dfrac{n^4-4n^6}{n\left(\sqrt{n^4+1}+\sqrt{4n^6+1}\right)}=\lim\dfrac{\dfrac{1}{n^2}-6}{\sqrt{\dfrac{1}{n^6}+\dfrac{1}{n^{10}}}+\sqrt{\dfrac{4}{n^4}+\dfrac{1}{n^{10}}}}=\dfrac{-6}{0}=-\infty\)

AH
Akai Haruma
Giáo viên
8 tháng 3 2021

Đề bị lỗi công thức rồi bạn. Bạn cần viết lại để được hỗ trợ tốt hơn.

NV
13 tháng 2 2022

\(\lim\dfrac{3+4^n}{1+3.4^{n+1}}=\lim\dfrac{3+4^n}{1+12.4^n}=\lim\dfrac{3\left(\dfrac{1}{4}\right)^n+1}{\left(\dfrac{1}{4}\right)^n+12}=\dfrac{0+1}{0+12}=\dfrac{1}{12}\)

\(\lim\dfrac{\left(-2\right)^n+3^n}{\left(-2\right)^{n+1}+3^{n+1}}=\lim\dfrac{\left(-2\right)^n+3^n}{-2\left(-2\right)^n+3.3^n}=\lim\dfrac{\left(-\dfrac{2}{3}\right)^n+1}{-2\left(-\dfrac{2}{3}\right)^n+3}=\dfrac{0+1}{0+3}=\dfrac{1}{3}\)

NV
5 tháng 1 2021

\(a=lim\dfrac{\left(\dfrac{2}{6}\right)^n+1-\dfrac{1}{4}\left(\dfrac{4}{6}\right)^n}{\left(\dfrac{3}{6}\right)^n+6}=\dfrac{1}{6}\)

\(b=\lim\dfrac{\left(n+1\right)^2}{3n^2+4}=\lim\dfrac{n^2+2n+1}{3n^2+4}=\lim\dfrac{1+\dfrac{2}{n}+\dfrac{1}{n^2}}{3+\dfrac{4}{n^2}}=\dfrac{1}{3}\)

\(c=\lim\dfrac{n\left(n+1\right)}{2\left(n^2-3\right)}=\lim\dfrac{n^2+n}{2n^2-6}=\lim\dfrac{1+\dfrac{1}{n}}{2-\dfrac{6}{n^2}}=\dfrac{1}{2}\)

\(d=\lim\left[1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n}-\dfrac{1}{n+1}\right]=\lim\left[1-\dfrac{1}{n+1}\right]=1\)

\(e=\lim\dfrac{1}{2}\left[1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right]\)

\(=\lim\dfrac{1}{2}\left[1-\dfrac{1}{2n+1}\right]=\dfrac{1}{2}\)

16 tháng 2 2021

a/ Bạn coi lại đề bài, 3n^2 +n^2 thì bằng 4n^2 luôn chứ ko ai cho đề bài như vậy cả

b/ \(\lim\limits\dfrac{\dfrac{n^3}{n^3}+\dfrac{3n}{n^3}+\dfrac{1}{n^3}}{-\dfrac{n^3}{n^3}+\dfrac{2n}{n^3}}=-1\)

c/ \(=\lim\limits\dfrac{-\dfrac{2n^3}{n^2}+\dfrac{3n}{n^2}+\dfrac{1}{n^2}}{-\dfrac{n^2}{n^2}+\dfrac{n}{n^2}}=\lim\limits\dfrac{-2n}{-1}=+\infty\)

d/ \(=\lim\limits\left[n\left(1+1\right)\right]=+\infty\)

e/ \(\lim\limits\left[2^n\left(\dfrac{2n}{2^n}-3+\dfrac{1}{2^n}\right)\right]=\lim\limits\left(-3.2^n\right)=-\infty\)

f/ \(=\lim\limits\dfrac{4n^2-n-4n^2}{\sqrt{4n^2-n}+2n}=\lim\limits\dfrac{-\dfrac{n}{n}}{\sqrt{\dfrac{4n^2}{n^2}-\dfrac{n}{n^2}}+\dfrac{2n}{n}}=-\dfrac{1}{2+2}=-\dfrac{1}{4}\)

g/ \(=\lim\limits\dfrac{n^2+3n-1-n^2}{\sqrt{n^2+3n-1}+n}+\lim\limits\dfrac{n^3-n^3+n}{\sqrt[3]{\left(n^3-n\right)^2}+n.\sqrt[3]{n^3-n}+n^2}\)

\(=\lim\limits\dfrac{\dfrac{3n}{n}-\dfrac{1}{n}}{\sqrt{\dfrac{n^2}{n^2}+\dfrac{3n}{n^2}-\dfrac{1}{n^2}}+\dfrac{n}{n}}+\lim\limits\dfrac{\dfrac{n}{n^2}}{\dfrac{\sqrt[3]{\left(n^3-n\right)^2}}{n^2}+\dfrac{n\sqrt[3]{n^3-n}}{n^2}+\dfrac{n^2}{n^2}}\)

\(=\dfrac{3}{2}+0=\dfrac{3}{2}\)

16 tháng 2 2021

không thích coi rồi sao kh :D 

NV
8 tháng 3 2021

\(\lim\dfrac{1+a+...+a^n}{1+b+...+b^n}=\lim\dfrac{\dfrac{1-a^n}{1-a}}{\dfrac{1-b^n}{1-b}}=\lim\dfrac{\left(1-a^n\right)\left(1-b\right)}{\left(1-b^n\right)\left(1-a\right)}=\dfrac{1-b}{1-a}\)

\(\Rightarrow\dfrac{1-b}{1-a}=\dfrac{2}{3}\Leftrightarrow3-3b=2-2a\)

\(\Leftrightarrow2a-3b=-1\)

NV
6 tháng 2 2021

\(a=\lim n\left(\sqrt[3]{-1+\dfrac{2}{n}-\dfrac{5}{n^3}}\right)=+\infty.\left(-1\right)=-\infty\)

\(b=\lim\left(\sqrt{n+1}+\sqrt{n}\right)=+\infty\)

\(c=\lim n\left(\dfrac{1}{n^2+n}-1\right)=+\infty.\left(-1\right)=-\infty\)

\(d=\lim\left(\dfrac{2n^2-1-2n\left(n+1\right)}{n+1}\right)=\lim\left(\dfrac{-1-2n}{n+1}\right)=-2\)

\(e=\lim\dfrac{2n^2+n-3+\dfrac{1}{n}}{\dfrac{2}{n}-3}=\dfrac{+\infty}{-3}=-\infty\)

6 tháng 2 2021

 E cảm ơn ạ