\(\left(x+\sqrt{x^2+3}\right)\left(y+\sqrt{y^2+3}\right)=3\)
   Tính x+y

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
21 tháng 10 2021

Ta có:\(\left(x+\sqrt{x^2+3}\right)\left(y-\sqrt{y^2+3}\right)\left(y+\sqrt{y^2+3}\right)=3\left(y-\sqrt{y^2+3}\right)\)

\(\Leftrightarrow-3\left(x+\sqrt{x^2+3}\right)=3\left(y-\sqrt{y^2+3}\right)\)

\(\Leftrightarrow x+\sqrt{x^2+3}=\sqrt{y^2+3}-y\)                                                 (1)

 Lại có:\(\left(x+\sqrt{x^2+3}\right)\left(x-\sqrt{x^2+3}\right)\left(y+\sqrt{y^2+3}\right)=3\left(x-\sqrt{x^2+3}\right)\)

\(\Leftrightarrow-3\left(y+\sqrt{y^2+3}\right)=3\left(x-\sqrt{x^2+3}\right)\)

\(\Leftrightarrow y+\sqrt{y^2+3}=\sqrt{x^2+3}-x\)                                               (2)

Cộng theo vế \(\left(1\right)\) và \(\left(2\right)\) ta có:\(x+\sqrt{x^2+3}+y+\sqrt{y^2+3}=\sqrt{y^2+3}+\sqrt{x^2+3}-x-y\)

\(\Leftrightarrow2x+2y=0\Leftrightarrow x+y=0\)

21 tháng 10 2021

Nhân cả 2 vế đẳng thức với \(\left(x-\sqrt{x^2+3}\right)\left(y-\sqrt{y^2+3}\right).\)

\(\Rightarrow VT=\left(x+\sqrt{x^2+3}\right)\left(x-\sqrt{x^2+3}\right)\left(y+\sqrt{y^2+3}\right)\left(y-\sqrt{y^2+3}\right)=\)

\(=\left[x^2-\left(x^2+3\right)\right]\left[y^2-\left(y^2+3\right)\right]=\left(-3\right)\left(-3\right)=9\)

\(VP=3\left(x-\sqrt{x^2+3}\right)\left(y-\sqrt{y^2+3}\right)=VT=9\)

\(\Rightarrow\left(x-\sqrt{x^2+3}\right)\left(y-\sqrt{y^2+3}\right)=3=\left(x+\sqrt{x^2+3}\right)\left(y+\sqrt{y^2+3}\right)\)

\(\Leftrightarrow xy-x\sqrt{y^2+3}-y\sqrt{x^2+3}+\sqrt{\left(x^2+3\right)\left(y^2+3\right)}=\)

\(=xy+x\sqrt{y^2+3}+y\sqrt{x^2+3}+\sqrt{\left(x^2+3\right)\left(y^2+3\right)}\)

\(\Leftrightarrow x\sqrt{y^2+3}=-y\sqrt{x^2+3}\)

\(\Leftrightarrow\sqrt{x^2\left(y^2+3\right)}=\sqrt{y^2\left(x^2+3\right)}\) Bình phương 2 vế

\(\Leftrightarrow x^2y^2+3x^2=x^2y^2+3y^2\Leftrightarrow x^2-y^2=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)=0\Rightarrow x+y=0\) với đk \(x\ne y\)

10 tháng 9 2017

22222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222

25 tháng 7 2016

hiểu chưa 

25 tháng 7 2016

hieu chet lien

10 tháng 8 2017

Ta có :

 Đặt A=\(\frac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\left(\left(\frac{x+y}{xy}\right).\frac{1}{\left(\sqrt{x}+\sqrt{y}\right)^2}+\frac{2.\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}.\left(\sqrt{x}+\sqrt{y}\right)^3}\right)\)

=\(\frac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\left(\frac{x+y}{xy\left(\sqrt{x}+\sqrt{y}\right)^2}+\frac{2\sqrt{xy}}{xy\left(\sqrt{x}+\sqrt{y}\right)^2}\right)\)

=\(\frac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\left(\frac{\left(\sqrt{x}+\sqrt{y}\right)^2}{xy\left(\sqrt{x}+\sqrt{y}\right)^2}\right)\)

=\(\frac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\frac{1}{xy}\)

=\(\frac{xy.\left(\sqrt{x}-\sqrt{y}\right)}{xy\sqrt{xy}}\)

=\(\frac{\sqrt{x}-\sqrt{y}}{\sqrt{xy}}\)

=\(\frac{\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}}{\sqrt{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}}\)

=\(\frac{\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}}{\sqrt{4-3}}\)

=\(\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\)

=> \(A^2=\left(\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\right)^2\)

           =\(2-\sqrt{3}-2\sqrt{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}+2+\sqrt{3}\)

           =\(4-2\sqrt{4-3}\)

           =\(4-2\)

           =\(2\)

=>\(A=\sqrt{2}\)

a: \(=\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}-\sqrt{ab}=\sqrt{ab}-\sqrt{ab}=0\)

b: \(=\dfrac{\left(\sqrt{x}-2\sqrt{y}\right)^2}{\sqrt{x}-2\sqrt{y}}+\dfrac{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)

\(=\sqrt{x}-2\sqrt{y}+\sqrt{y}=\sqrt{x}-\sqrt{y}\)

c: \(=\sqrt{x}+2-\dfrac{x-4}{\sqrt{x}-2}\)

\(=\sqrt{x}+2-\sqrt{x}-2=0\)