K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 2 2023

Thay \(\left(-2;2\right)\) vào 2 pt 2 cạnh đều ko thỏa \(\Rightarrow\) 2 cạnh còn lại đi qua (-2;2)

2 cạnh đã cho ban đầu có vtpt lần lượt là (1;-1) và (1;3), do đó 2 cạnh còn lại cũng lần lượt nhận (1;-1)  cà (1;3) là vtpt (do các cặp cạnh đối của hình bình hành song song)

Phương trình 2 cạnh còn lại là:

\(1\left(x+2\right)-1\left(y-2\right)=0\Leftrightarrow x-y+4=0\)

\(1\left(x+2\right)+3\left(y-2\right)=0\Leftrightarrow x+3y-4=0\)

12 tháng 4 2017

Bạn ơi, tại sao lại biết:

Cạnh DC: x-3y=0

Cạnh BC: 2x+5y=6

NV
9 tháng 3 2021

Giả sử hình thoi là ABCD với \(A\left(0;1\right)\)

Do tọa độ A thỏa \(x+7y-7=0\) nên đó là cạnh chứa A, ko mất tính tổng quát, giả sử đó là cạnh AB

Tọa độ A ko thỏa pt đường chéo nên đó là đường chéo BD

\(\Rightarrow\) Tọa độ B là nghiệm: \(\left\{{}\begin{matrix}x+7y-7=0\\x+2y-7=0\end{matrix}\right.\) \(\Rightarrow B\left(7;0\right)\)

Phương trình AC qua A vuông góc BD: \(2\left(x-0\right)-1\left(y-1\right)=0\Leftrightarrow2x-y+1=0\)

Tọa độ tâm I là nghiệm: \(\left\{{}\begin{matrix}x+2y-7=0\\2x-y+1=0\end{matrix}\right.\)  \(\Rightarrow I\left(1;3\right)\)

I là trung điểm AC \(\Rightarrow C\left(2;5\right)\)

I là trung điểm BD \(\Rightarrow D\left(-5;-3\right)\)

Biết tọa độ các đỉnh, bạn tự viết pt các cạnh nhé

A:

loading...  loading...  loading...  loading...  loading...  loading...  

28 tháng 1 2021

Thay điểm A vào đường thẳng d1 và d2 ta thấy A đều không thuộc hai đường thẳng đó

\(\Rightarrow\) d1, d2 là phương trình của các đường cao kẻ từ đỉnh B và đỉnh C

Giả sử d1 là đường cao kẻ từ B

Vì \(d_1\perp AC\Rightarrow\) phương trình đường thẳng AC có dạng:

\(x-y+m=0\)

Vì \(A\left(2;2\right)\in AC\Rightarrow2-2+m=0\Rightarrow m=0\)

\(\Rightarrow x-y=0\left(AC\right)\)

\(\Rightarrow\) C có tọa độ là nghiệm của hệ \(\left\{{}\begin{matrix}x-y=0\left(AC\right)\\9x-3y+4=0\left(d_2\right)\end{matrix}\right.\Leftrightarrow x=y=-\dfrac{2}{3}\)

\(\Rightarrow C=\left(-\dfrac{2}{3};-\dfrac{2}{3}\right)\)

Tương tự ta tìm được \(B=\left(-1;3\right)\)

20 tháng 3 2021

Phương trình đường thẳng qua O và song song AB có dạng: x−y=0

 Tọa độ M là nghiệm của hệ: {x+3y−6=0x−y=0 ⇒M(32;32)

Phương trình đường thẳng BC qua M, nhận (1;1) là 1 vtpt có dạng:

1(x−32)+1(y−32)=0⇔x+y−3=0

Tọa độ B là nghiệm của hệ: {x−y+5=0x+y−3=0 ⇒B

M là trung điểm BC  tọa độ C

O là trung điểm AC  tọa độ A

O là trung điểm BD 

AH
Akai Haruma
Giáo viên
30 tháng 1 2021

Lời giải:

$BD: x+2y-7=0; AD: x+3y-3=0$ nên $D$ chính là giao điểm của 2 PTĐT này.

\(\Rightarrow \left\{\begin{matrix} x_D+2y_D-7=0\\ x_D+3y_D-3=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x_D=15\\ y_D=-4\end{matrix}\right.\)

Vì $ABCD$ là hình thoi nên $AC\perp BD$.

$\Rightarrow \overrightarrow{AC}=\overrightarrow{n_{BD}}=(1,2)$

$\Rightarrow \overrightarrow{n_{AC}}=(-2,1)$

PTĐT $AC$ là:

$-2(x-0)+1(y-1)=0\Leftrightarrow -2x+y-1=0\Leftrightarrow 2x-y+1=0$

Gọi $O$ là giao 2 đường chèo $AC, BD$. 

\(\Rightarrow \left\{\begin{matrix} 2x_O-y_O+1=0\\ x_O+2y_O-7=0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x_O=1\\ y_O=3\end{matrix}\right.\)

$O$ là trung điểm $BD$ nên: $x_B=2x_O-x_D=2-15=-13$

$y_B=2y_O-y_D=6+4=10$

Vì $\overrightarrow{BC}=\overrightarrow{AD}$ nên PTĐT $BC$ có dạng:

$(x+13)+3(y-10)-3=0$

$\Leftrightarrow x+3y-30=0$

$O$ là trung điểm của $AC$ nên:

$x_C=2x_O-x_A=2-0=2$

$y_C=2y_C-y_A=6-1=5$

$\Rightarrow \overrightarrow{CD}=(13, -9)$

$\Rightarrow \overrightarrow{n_{CD}}=(9,13)$

PTĐT $CD$ là: $9(x-2)+13(y-5)=0\Leftrightarrow 9x+13y-83=0$

PTĐT $AB$ là: $9(x-0)+13(y-1)=0\Leftrightarrow 9x+13y-13=0$