\(\frac{b.z-c.y}{a}=\frac{c.x-a.z}{b}=\frac{a.y-b.x}{c}\)(với a,b,c khác 0)

Ch...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(=\frac{bzx-cxy}{ax}=\frac{cxy-ayz}{by}=\frac{ayz-bzx}{cz}=\frac{bzx-cxy+cxy-ayz+ayz-bzx}{ax+by+cz}=0\)

=>bz-cy=0;cx-az=0;ay-bx=0

\(\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\left(đpcm\right)\)

4 tháng 2 2018

\(\dfrac{bz-cy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}\)

\(\Rightarrow\dfrac{abz-acy}{a^2}=\dfrac{bcx-abz}{b^2}=\dfrac{acy-bcx}{c^2}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{abz-acy}{a^2}=\dfrac{bcx-abz}{b^2}=\dfrac{acy-bcx}{c^2}=\dfrac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}=0\)

Suy ra \(\left\{{}\begin{matrix}bz=cy\Leftrightarrow\dfrac{y}{b}=\dfrac{z}{c}\\cx=az\Leftrightarrow\dfrac{x}{a}=\dfrac{z}{c}\\ay=bx\Leftrightarrow\dfrac{x}{a}=\dfrac{y}{b}\end{matrix}\right.\Leftrightarrow\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\left(đpcm\right)\)

p/s: đã sửa đề

16 tháng 12 2017

Đặt \(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}=A\)

Áp dụng TC DTSBN ta có :

\(A=\frac{x+2y+z}{a+2b+c+2\left(2a+b-c\right)+4a-4b+c}=\frac{x+2y+z}{a+2b+c+4a+2b-2c+4a-4b+c}\)

\(=\frac{x+2y+z}{9a}=\frac{1}{9}.\frac{x+2y+z}{a}\) (1)

\(A=\frac{2x+y+z}{2\left(a+2b+c\right)+2a+b-c+4a-4b+c}=\frac{2x+y-z}{2a+4b+2c+2a+b-c-4a+4b-c}\)

\(=\frac{2x+y-z}{9b}=\frac{1}{9}.\frac{2x+y-z}{b}\) (2)

\(A=\frac{4x-4y+z}{4\left(a+2b+c\right)-4\left(2a+b-c\right)+4a-4b+c}=\frac{4x-4y+z}{4a+8b+4c-8a-4b+4c+4a-4b+c}\)

\(=\frac{4x-4y+z}{9c}=\frac{1}{9}.\frac{4x-4y+z}{c}\)(3)

Từ (1);(2);(3) \(\Rightarrow\frac{a}{x+2y+z}=\frac{b}{2x+y+z}=\frac{c}{4x-4y+z}\) (đpcm)

27 tháng 11 2019

Bạn xem lời giải  Tại đây  nhé !

11 tháng 3 2017

Đặt \(\frac{x}{a+2b+c}\)=\(\frac{y}{2a+b-c}\)=\(\frac{z}{4a-4b+c}\)=k

=>x=ak+2bk+ck; y=2ak+bk-ck; z=4ak-4bk+ck

=> \(\frac{a}{x+2y+c}\)=\(\frac{a}{ak+2bk+ck+4bk+2bk-2ck+4ak-4bk+ck}\)=\(\frac{a}{9ak}\)=\(\frac{1}{9k}\)

Tương tự => \(\frac{a}{x+2y+c}\)=\(\frac{b}{2x+y-z}\)=\(\frac{c}{4x-4y+z}\)=\(\frac{1}{9k}\)