Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: \(\left(\frac{a}{b}\right)^3=\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}=\frac{1}{8}=\left(\frac{1}{2}\right)^3\Rightarrow\frac{a}{b}=\frac{1}{2}\)
theo tính chất dãy tỉ số bằng nhau có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}=\frac{1}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{a+b+c}\) =\(\frac{a+b+c+d}{b+c+d+a+c+d+a+b+d+a+b+c}\)
Vì a+b+c+d khác 0
=> b+c+d=a+c+d=a+b+d=a+b+c
=>a=b=c=d
Khi đó:
a + b = c+d
b+c= (a+d)
c+d=a+b
d+a=b+c
=>\(\frac{a+b}{c+d}=\frac{b+c}{a+d}=\frac{c+d}{a+b}=\frac{d+a}{b+c}=1\)
\(\frac{b+c+d}{a}\)= \(\frac{c+d+a}{b}\)= \(\frac{d+a+b}{c}\)= \(\frac{a+b+c}{d}\)
= \(\frac{b+c+d+c+d+a+d+a+b+a+b+c}{a+b+c+d}\)
= \(\frac{3a+3b+3c+3d}{a+b+c+d}\)
= \(\frac{3\left(a+b+c+d\right)}{a+b+c+d}\)= 3
vậy k = 3
b+c+d/a=c+d+a/b=d+a+b/c=a+b+c/d=k
áp dụng tc dãy tỉ số bằng nhau ta được:
b+c+d+c+d+a+d+a+b+a+b+c/a+b+c+d=k
=>3a+3b+3c+3d/a+b+c+d=k
=>3+k
=>k=3
Vậy k=3
a) Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{a}{b}-1=\frac{c}{d}-1\)
\(\Rightarrow\frac{a}{b}-\frac{b}{b}=\frac{c}{d}-\frac{d}{d}.\)
\(\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}\left(đpcm1\right).\)
b) Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{a}{b}+1=\frac{c}{d}+1\)
\(\Rightarrow\frac{a}{b}+\frac{b}{b}=\frac{c}{d}+\frac{d}{d}.\)
\(\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\left(đpcm2\right).\)
c) Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\) (1)
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{a-c}{b-d}=\frac{a+c}{b+d}\left(đpcm3\right).\)
Chúc bạn học tốt!
\(\left(\frac{a}{b}\right).\left(\frac{b}{c}\right).\left(\frac{c}{d}\right)=\frac{abc}{bcd}=\frac{a}{d}=\frac{1}{8}=\left(\frac{1}{2}\right)^3\)=> \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{1}{2}\)
Theo t/c của dãy tỉ số bằng nhau ta có:\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}=\frac{1}{2}\)
\(\text{Giải :}\)
\(\left(\frac{a}{b}\right).\left(\frac{b}{c}\right).\left(\frac{c}{d}\right)=\frac{abc}{bcd}=\frac{a}{d}=\frac{1}{8}=\left(\frac{1}{2}\right)^3\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{1}{2}\)
\(\text{Theo tính chất dãy tỉ số bằng nhau , ta có :}\)
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}=\frac{1}{2}\)
\(\text{Vậy }\frac{a+b+c}{b+c+d}=\frac{1}{2}\)
\(\text{~~Học tốt~~}\)