K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2019

PT hoành độ giao điểm là

(3m-1) x+ 6m+ 3 == x3-3x2+ 1 hay   x3-3x2 – (3m-1) x-6m-2=0  ( *)

Giả sử A( x1; y1) ; B( x2; y2) lần lượt là giao điểm của (C) và (d)

Vì B cách đều hai điểm A và C nên B là trung điểm của AC

Suy ra x1+ x3= 2x2

Thay x2= 1vào , ta có 

Vậy  -1< m< 0

Chọn C.

9 tháng 11 2017

Chọn B

Phương trình hoành độ giao điểm

.

Đường thẳng cắt đồ thị hàm số tại điểm phân biệt

có hai nghiệm phân biệt khác

Giả sử , là hai nghiệm phân biệt của , theo hệ thức Viet thì .

Ta có .

Bài ra ta có

.

Kết hợp với ta được thỏa mãn.

22 tháng 7 2019

Phương trình hoành độ giao điểm

x3+2mx2+3(m-1)x+2  =-x+2 hay    x(x2+2mx+3(m-1))=0  

suy ra x=0 hoặc x2+2mx+3(m-1)=0    (1)

Đường thẳng d cắt (C)  tại ba điểm phân biệt khi và chỉ khi phương trình (1)  có hai nghiệm phân biệt khác 0

⇔ m 2 - 3 m + 3 > 0 m - 1 ≠ 0 ⇔ ∀ m m ≠ 1 ⇔ m ≠ 1

Khi đó ta có: C( x; -x1+2) ; B(x; -x2+2)  trong đó x; x2 là nghiệm của (1) ; nên theo Viet thì  x 1 + x 2 = - 2 m x 1 x 2 = 3 m - 3

Vậy 

C B → = ( x 2 - x 1 ; - x 2 + x 1 ) ⇒ C B = 2 ( x 2 - x 1 ) 2 = 8 ( m 2 - 3 m + 3 )

d ( M ; ( d ) ) = - 3 - 1 + 2 2 = 2

Diện tích tam giác MBC bằng khi và chỉ khi

Chọn B.

3 tháng 12 2017

22 tháng 4 2018

12 tháng 3 2018

 

2x3-3x2+1  =x-1 hay 2x3-3x2-x+2=0

Khi đó ta có A(1 ; 0) ; B( x; x1-1) và C( x; x2-1)   ( x; x2  nghiệm của (1))

Ta có , suy ra

Chọn B.

22 tháng 9 2018

Chọn D

6 tháng 3 2017

1 tháng 6 2019

Đáp án A

+ Phương trình hoành độ giao điểm:

+ Điều kiện để d cắt tại hai điểm phân biệt là .

+ Trung điểm của MN là I.

+ Theo công thức đường trung tuyến .

nhỏ nhất khi nhỏ nhất.

, dấu bằng xảy ra khi 

22 tháng 6 2017

Đường thẳng d đi qua A và có hệ số góc k nên có dạng y= k( x+ 1)   hay

Kx- y+k=0 .

Phương trình hoành độ giao điểm của C  và  d là:

x 3 - 3 x 2 + 4 = k x + k ⇔ ( x + 1 ) ( x 2 - 4 x + 4 - k ) = 0

D cắt tại ba điểm phân biệt khi phương trình (*) có hai nghiệm phân biệt khác -1

⇔ ∆ ' > 0 g ( - 1 ) ≠ 0 ⇔ k > 0 k ≠   9

Khi đó g( x) =0 khi x=2- k ;   x = 2 + k    Vậy các giao điểm của hai đồ thị lần lượt là

A ( - 1 ;   0 ) ; B ( 2 - k ;   3 k - k k ) ; C ( 2 + k ;   3 k + k k ) .

Tính được

B C = 2 k 1 + k 2 , d ( O , B C ) = d ( O , d ) = k 1 + k 2 .

Khi đó 

S ∆ O B C = 1 2 . k k 2 + 1 . 2 k . k 2 + 1 = 1 ⇔ k k = 1 ⇔ k 3 = 1 ⇔ k = 1 .

 

Vậy k= 1 thỏa yêu cầu bài toán.

Chọn C.