Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\) Gọi độ dài 3 cạnh là a,b,c(cm;0<a<b<c<120)
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{120}{12}=10\\ \Rightarrow \begin{cases} a=10.3=30\\ b=10.4=40\\ c=10.5=50 \end{cases} \)
Vậy ...
\(b,\) Gọi độ dài 3 cạnh là a,b,c(cm;0<a<b<c)
\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{c-a}{7-3}=\dfrac{80}{4}=20\\ \Rightarrow \begin{cases} a=20.3=60\\ b=20.5=100\\ c=20.7=140 \end{cases}\\ \Rightarrow P=a+b+c=300(cm)\)
Gọi độ dài của các cạnh tam giác là a, b, c tỉ lệ với 3, 4, 5
Theo bài ra ta có:
\(a:b:c=3:4:5\) và c - a = 6
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{c-a}{5-3}=\dfrac{6}{2}=3\)
Do đó: \(\Rightarrow\left\{{}\begin{matrix}3.3=9\\4.3=12\\5.3=15\end{matrix}\right.\)
Vậy:...
Gọi độ dài các cạch của tam giác là a,b,c với các cạnh là 3,4,5
Theo đề ta có:
a:b:c=3:4:5 và c-a =6
Áp dụng tính chất của dãy số bangừ nhau ta có:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{c-a}{5-3}=\dfrac{6}{2}=3\)
Vậy ta có như sau:
\(\dfrac{a}{3}=3\Rightarrow a=9\)
\(\dfrac{b}{4}=3\Rightarrow b=12\)
\(\dfrac{c}{5}=3\Rightarrow c=15\)
gọi 3 cạnh của tam giác là a,b,c có:
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}\) (trong đó a là cạnh bé nhất, c là cạnh lớn nhất)
ADTCCDTSBN ta có:
\(\frac{a-c}{7-3}=\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=2\)
\(\hept{\begin{cases}\frac{a}{3}=2\\\frac{b}{5}=2\\\frac{c}{7}=2\end{cases}}\)
\(\Rightarrow a=6,b=10,c=14\)
Gọi độ dài của 3 cạnh đó lần lượt là \(a,b,c\)
\(\Rightarrow\frac{a}{3}=\frac{b}{5}=\frac{c}{7}\)
Đặt \(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=k\Rightarrow\hept{\begin{cases}a=3k\\b=5k\\c=7k\end{cases}}\)
Ta thấy \(3k< 5k< 7k\)(k>0 vì độ dài cạnh của tam giác không thể bé hơn hoặc bằng 0)
\(\Rightarrow7k-3k=8\Rightarrow4k=8\Rightarrow k=2\)
\(\Rightarrow\hept{\begin{cases}a=2.3=6\left(cm\right)\\b=2.5=10\left(cm\right)\\c=2.7=14\left(cm\right)\end{cases}}\)
Vậy,.......
HỌC TỐT
gọi độ dài 3 cạnh của tam giác đó lần lượt là x;y;z(x;y;z>0)
ta có :
x/3=y/5=z/7 và x+y+z=150
áp dụng tc dãy ts = nhau ta có :
x/3=y/5=z/7=x+y+z/3+5+7=150/15=10
=>x/3=10=>x=30 cm
=>y/5=10=>y=50 cm
=>z/7=10=>z=70 cm
vậy ...
Gọi độ dài ba cạnh là x;y;z
Theo bài ra ta có : \(\frac{x}{3}+\frac{x}{5}+\frac{x}{7}=150\)
Áp dụng dãy tỉ bằng nhau : \(\frac{x}{3}+\frac{x}{5}+\frac{x}{7}=\frac{150}{15}=10\)
\(\Rightarrow\) \(\frac{x}{3}=10\Rightarrow x=30\)
\(\Rightarrow\frac{y}{5}=10\Rightarrow x=50\)
\(\Rightarrow\)\(\frac{z}{7}=10\Rightarrow z=70\)
P/s : Sai đừng trách nha - Bởi mình mới lớp 6
Gọi 3 cạnh tam giác lần lượt là : a, b , c
a:b:c=3:4:5 hay
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{48}{12}=4\)
=> a = 4 . 3 = 12
=> b = 4 . 4 = 16
=> c = 5 . 4 = 20
vậy 3 cạnh có số đo lần lượt là : 12 cm , 16 cm , 20 cm
Gọi độ dài các cạnh của tam giác lần lượt là x, y, z (cm)
Theo đề bài ta có:
Chọn đáp án A
Gọi số đó của 3 cạnh đó lần lượt là a;b;c
Ta có: a/3 = b/4 = c/5 và c - a = 6
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{c-a}{5-3}=\frac{6}{2}=3\)
=> a = 3.3 = 9 ; b = 3.4 = 12 ; c = 5.3 = 15
Vậy số đó của 3 cạnh đó lần lượt là 9 cm ; 12 cm ; 15cm
gọi độ dài 3 cạnh của 1 tam giác tỉ lệ lần lượt vs a,b,c
Ta có:\(\frac{a}{3}\)=\(\frac{b}{4}\)=\(\frac{c}{5}\) và c-a=6
Ap dụng tính chát của dãy tỉ số bằng nhau ta có
\(\frac{a}{3}\)=\(\frac{b}{4}\)=\(\frac{c}{4}\)=\(\frac{c-a}{5-3}\)=\(\frac{6}{2}\)
=3
suy ra:a=3.3=9
b=4.3=12
c=5.3=15
Gọi độ dài 3 cạnh của tam giác lần lượt là x, y, z (đơn vị: m)
Ba cạnh tỉ lệ với 3; 4; 5 => \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Cạnh lớn nhất hơn cạnh nhỏ nhất 6m => z - x = 6.
Theo tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{z-x}{5-3}=\frac{6}{2}=3\)
\(\frac{x}{3}=3\Rightarrow x=3.3=9\)
\(\frac{y}{4}=3\Rightarrow y=3.4=12\)
\(\frac{z}{5}=3\Rightarrow z=3.5=15\)
Vậy, độ dài mỗi cạnh của tam giác lần lượt là 9; 12; 15 (m)
@Nghệ Mạt
#cua
c-a= 8 ở đâu ra
Đề bài thiếu bạn nhé