Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/c=b/d=k
=>a=ck; b=dk
=>\(\dfrac{c\cdot a^2+d\cdot b^2}{c^3+d^3}\)
\(=\dfrac{c\cdot c^2k^2+d\cdot d^2k^2}{c^3+d^3}=k^2\)
tỉ số của a / b là (92 - 1/9 - 2/ 10 - 3/11 - ... - 92/100) trên 1/45 + 1/50 + ... + 1/500 :)) hay ngắn tắc hơn là A/B cho nhanh :)))))))))))))))
\(A=\left(1+1+...+1\right)-\left(\dfrac{1}{9}+\dfrac{2}{10}+...+\dfrac{92}{100}\right)\)𝓒𝓸́ 92 𝓼𝓸̂́ 1
\(A=\left(1-\dfrac{1}{9}\right)+\left(1-\dfrac{2}{10}\right)+...+\left(1-\dfrac{92}{100}\right)\)
\(A=\dfrac{8}{9}+\dfrac{8}{10}+...+\dfrac{8}{100}\)
\(A=8.\left(\dfrac{1}{9}+\dfrac{1}{10}+...+\dfrac{1}{100}\right)\)
\(B=\dfrac{1}{45}+\dfrac{1}{50}+...+\dfrac{1}{500}\)
\(B=\dfrac{1}{5}.\left(\dfrac{1}{9}+\dfrac{1}{10}+...+\dfrac{1}{100}\right)\)
\(\Rightarrow\dfrac{A}{B}=\dfrac{8.\left(\dfrac{1}{9}+\dfrac{1}{10}+...+\dfrac{1}{100}\right)}{\dfrac{1}{5}.\left(\dfrac{1}{9}+\dfrac{1}{10}+...+\dfrac{1}{100}\right)}\\ \Rightarrow\dfrac{A}{B}=\dfrac{8}{\dfrac{1}{5}}=40\)
𝓥𝓪̣̂𝔂 𝓽𝓲̉ 𝓼𝓸̂́ 𝓬𝓾̉𝓪 𝓐 𝓿𝓪̀ 𝓑 𝓵𝓪̀ 40
Áp dụng t/c dtsbn:
\(\dfrac{1}{a+b}=\dfrac{2}{b+c}=\dfrac{3}{c+a}=\dfrac{1+2+3}{2\left(a+b+c\right)}=\dfrac{6}{2\left(a+b+c\right)}=\dfrac{3}{a+b+c}\)
\(\Rightarrow\left\{{}\begin{matrix}3a+3b=a+b+c\\3b+3c=2a+2b+2c\\3a+3c=3a+3b+3c\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}c=2a\\b=0\end{matrix}\right.\)
\(Q=\dfrac{a+2021b+c}{a+2022b+c}=\dfrac{a+2a}{a+2a}=1\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{15}=\dfrac{b}{10}=\dfrac{c}{8}=\dfrac{a+b+c}{15+10+8}=\dfrac{11}{33}=\dfrac{1}{3}\)
Do đó: a=5; b=10/3; c=8/3
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{8}=\dfrac{b}{12}=\dfrac{c}{15}=\dfrac{a-b-c}{8-12-15}=\dfrac{28}{-19}=\dfrac{-28}{19}\)
Do đó: \(\left\{{}\begin{matrix}a=\dfrac{-224}{19}\\b=\dfrac{-336}{19}\\c=\dfrac{-420}{19}\end{matrix}\right.\)
\(\dfrac{a}{b}=2\Rightarrow\dfrac{a}{2}=b\Rightarrow\dfrac{a}{6}=\dfrac{b}{3}\)
\(\dfrac{b}{c}=3\Rightarrow\dfrac{b}{3}=c\)
\(\Rightarrow\dfrac{a}{6}=\dfrac{b}{3}=c=k\\ \Rightarrow a=6k;b=3k;c=k\)
\(\dfrac{a+b}{b+c}=\dfrac{6k+3k}{3k+k}=\dfrac{9k}{4k}=\dfrac{9}{4}\)