Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự vẽ hình
Kẻ BH \(\perp\)AC và \(CK\perp\)AB
Tam giác AKC vuông tại K
=>CK=bsinA (1)
Tam giác BKC vuông tại K
=>CK=asinB (2)
Từ (1) (2)=>bsinA=asinB
<=>\(\frac{a}{sinA}=\frac{b}{sinB}\)
Chứng minh tương tự ta có :\(\frac{a}{sinA}=\frac{c}{sinC}\)
Vậy ....
a) Kẻ đường cao : BH , AI , CK
Ta có: sinA = BH / c ; sinB = AI / c
=> sinA/sinB = BH / AI (1)
Mà BH = a.sinC ; AI = b.sinC
=> BH/AI = a/b (2)
Từ (1) và (2)
=> sinA/sinB = a/b => a/sinA = b/sinB
CMTT ta có:
b/sinB = c/sinC ; c/sinC = a/sinA
Từ đó suy ra a /sinA = b / sinB = c /sinC
H A B C
a)Kẻ đường cao : BH , AI , CK
Ta có: sinA = BH / c ; sinB = AI / c
=> sinA/sinB = BH / AI ﴾1﴿
Mà BH = a.sinC ; AI = b.sinC
=> BH/AI = a/b ﴾2﴿
Từ ﴾1﴿ và ﴾2﴿ suy ra sinA/sinB = a/b => a/sinA = b/sinB
Bạn chỉ việc nói chứng minh tượng tự , ta có:
b/sinB = c/sinC ; c/sinC = a/sinA
Từ đó suy ra a /sinA = b / sinB = c /sinC
Chúc bạn học tốt
NHỚ TK MK NHA
B A C a
Xét ΔBAC vuông tại B có a = ^A ta có :
a) \(\frac{\sin\alpha}{\cos\alpha}=\frac{\sin A}{\cos A}=\frac{\frac{BC}{AB}}{\frac{AB}{AC}}=\frac{BC}{AB}\cdot\frac{AC}{AB}=\frac{BC}{AB}=\tan A=\tan\alpha\left(đpcm\right)\)
b) \(\frac{\cos\alpha}{\sin\alpha}=\frac{\cos A}{\sin A}=\frac{\frac{AB}{AC}}{\frac{BC}{AC}}=\frac{AB}{AC}\cdot\frac{AC}{BC}=\frac{AB}{BC}=\cot A=\cot\alpha\left(đpcm\right)\)
c) \(\tan\alpha\cdot\cot\alpha=\tan A\cdot\cot A=\frac{BC}{AB}\cdot\frac{AB}{BC}=1\left(đpcm\right)\)
d) \(\sin^2\alpha+\cos^2\alpha=\sin^2A+\cos^2A=\frac{BC^2}{AC^2}+\frac{AB^2}{AC^2}=\frac{AB^2+BC^2}{AC^2}=1\left(đpcm\right)\)
e) \(\frac{1}{\cos^2\alpha}=\frac{1}{\cos^2A}=\frac{1}{\frac{AB^2}{AC^2}}=\frac{AC^2}{AB^2};1+\tan^2\alpha=1+\tan^2A=1+\frac{BC^2}{AB^2}=\frac{AB^2+BC^2}{AB^2}=\frac{AC^2}{AB^2}\)
\(\Rightarrow1+\tan^2\alpha=\frac{1}{\cos^2\alpha}\left(đpcm\right)\)
f) \(\frac{1}{\sin^2\alpha}=\frac{1}{\sin^2A}=\frac{1}{\frac{BC^2}{AC^2}}=\frac{AC^2}{BC^2};1+\cot^2\alpha=1+\cot^2A=1+\frac{AB^2}{BC^2}=\frac{BC^2+AB^2}{BC^2}=\frac{AC^2}{BC^2}\)
\(\Rightarrow1+\cot^2\alpha=\frac{1}{\sin^2\alpha}\left(đpcm\right)\)
chịu nhưng ai chat nhìu kt bn với mk nha, mk cho