K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2017

a)(x+1)(x2+2x)=(x+1)x(x+2)=0

\(=>\left\{{}\begin{matrix}x+1=0=>x=-1\\x=0\\x+2=0=>x=-2\end{matrix}\right.\)

b)x(3x-2)-5(2-3x)=x(3x-2)+5(3x-2)=(3x-2)(x+5)=0

\(=>\left\{{}\begin{matrix}3x-2=0=>x=\dfrac{2}{3}\\x+5=0=>x=-5\end{matrix}\right.\)

c)\(\dfrac{4}{9}-25x^2=\left(\dfrac{2}{3}\right)^2-\left(5x\right)^2=\left(\dfrac{2}{3}-5x\right)\left(\dfrac{2}{3}+5x\right)\)

=0

\(=>\left\{{}\begin{matrix}\dfrac{2}{3}-5x=0=>x=\dfrac{2}{15}\\\dfrac{2}{3}+5x=0=>x=\dfrac{-2}{15}\end{matrix}\right.\)

d)\(x^2-x+\dfrac{1}{4}=x^2-2.\dfrac{1}{2}.x+\left(\dfrac{1}{2}\right)^2=\left(x-\dfrac{1}{2}\right)^2=0\)

\(=>x-\dfrac{1}{2}=0=>x=\dfrac{1}{2}\)

15 tháng 7 2018

a) \(4.\left(x-1\right)^2-9=0\)

\(\Rightarrow4.\left(x-1\right)^2=9\)

\(\Rightarrow\left(x-1\right)^2=9:4=\dfrac{9}{4}=\left(\pm\dfrac{3}{2}\right)^2\)

\(\Rightarrow x-1=\pm\dfrac{3}{2}\)

\(\Rightarrow\left[{}\begin{matrix}x-1=\dfrac{3}{2}\\x-1=\dfrac{-3}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{-1}{2}\end{matrix}\right.\)

vậy\(\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{-1}{2}\end{matrix}\right.\)

b) \(\dfrac{1}{4}-9.\left(x-1\right)^2=0\)

\(\Rightarrow9.\left(x-1\right)^2=\dfrac{1}{4}\)

\(\Rightarrow\left(x-1^2\right)=\dfrac{1}{36}=(\pm\dfrac{1}{6})^2\)

\(\Rightarrow x-1=\pm\dfrac{1}{6}\)

\(\Rightarrow\left[{}\begin{matrix}x-1=\dfrac{1}{6}\\x-1=\dfrac{-1}{6}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{6}\\x=\dfrac{5}{6}\end{matrix}\right.\)

vậy \(\left[{}\begin{matrix}x=\dfrac{7}{6}\\x=\dfrac{5}{6}\end{matrix}\right.\)

15 tháng 7 2018

e) \(\dfrac{1}{16}-\left(2x+\dfrac{3}{4}\right)^2=0\)

\(\Rightarrow\left(2x+\dfrac{3}{4}\right)^2=\dfrac{1}{16}=\left(\pm\dfrac{1}{4}\right)^2\)

\(\Rightarrow2x+\dfrac{3}{4}=\pm\dfrac{1}{4}\)

\(\Rightarrow\)\(\left[{}\begin{matrix}2x+\dfrac{3}{4}=\dfrac{1}{4}\\2x+\dfrac{3}{4}=\dfrac{-1}{4}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{-1}{4}\\x=\dfrac{-1}{2}\end{matrix}\right.\)

vậy \(\left[{}\begin{matrix}x=\dfrac{-1}{4}\\x=\dfrac{-1}{2}\end{matrix}\right.\)

21 tháng 8 2017

\(e,\)

\(\left(\dfrac{1}{3}a^3b+\dfrac{1}{3}a^2b^2-\dfrac{1}{4}ab^3\right):5ab\)

\(=\dfrac{1}{15}a^2+\dfrac{1}{15}ab-\dfrac{1}{20}b^2\)

\(f,\)

\(\left(-\dfrac{2}{3}x^5y^2+\dfrac{3}{4}x^4y^3-\dfrac{4}{5}x^3y^4\right):6x^2y^2\)

\(=-\dfrac{1}{9}x^3+\dfrac{1}{8}x^2y-\dfrac{2}{15}xy^2\)

\(g,\)

\(\left(\dfrac{3}{4}a^6b^3+\dfrac{6}{5}a^3b^4-\dfrac{5}{10}ab^5\right):\left(\dfrac{3}{5}ab^3\right)\)

\(=\dfrac{5}{4}a^5+2a^2b-\dfrac{5}{6}b^2\)

21 tháng 8 2017

cam on

12 tháng 3 2018

bài 1:

b,\(\dfrac{x+2}{x}=\dfrac{x^2+5x+4}{x^2+2x}+\dfrac{x}{x+2}\)(ĐKXĐ:x ≠0,x≠-2)

<=>\(\dfrac{\left(x+2\right)^2}{x\left(x+2\right)}=\dfrac{x^2+5x+4}{x\left(x+2\right)}+\dfrac{x^2}{x\left(x+2\right)}\)

=>\(x^2+4x+4=x^2+5x+4+x^2\)

<=>\(x^2-x^2-x^2+4x-5x+4-4=0\)

<=>\(-x^2-x=0< =>-x\left(x+1\right)=0< =>\left[{}\begin{matrix}x=0\left(loại\right)\\x+1=0< =>x=-1\left(nhận\right)\end{matrix}\right.\)

vậy...............

d,\(\left(x+3\right)^2-25=0< =>\left(x+3-5\right)\left(x+3+5\right)=0< =>\left(x-2\right)\left(x+8\right)=0< =>\left[{}\begin{matrix}x-2=0\\x+8=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=2\\x=-8\end{matrix}\right.\)

vậy............

bài 3:

g,\(\dfrac{4}{x+1}-\dfrac{2}{x-2}=\dfrac{x+3}{x^2-x-2}\)(ĐKXĐ:x khác -1,x khác 2)

<=>\(\dfrac{4}{x+1}-\dfrac{2}{x-2}=\dfrac{x+3}{x^2-2x+x-2}\)

<=>\(\dfrac{4}{x+1}-\dfrac{2}{x-2}=\dfrac{x+3}{x\left(x-2\right)+\left(x-2\right)}\)

<=>\(\dfrac{4}{x+1}-\dfrac{2}{x-2}=\dfrac{x+3}{\left(x+1\right)\left(x-2\right)}\)

<=>\(\dfrac{4\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}-\dfrac{2\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\dfrac{x+3}{\left(x+1\right)\left(x-2\right)}\)

=>\(4x-8-2x-2=x+3\)

<=>\(x=13\)

vậy..............

mấy ý khác bạn làm tương tụ nhé

chúc bạn học tốt ^ ^

26 tháng 6 2018

2.

a. Ta có: x + y = 5 ⇒ x = 5 - y

Thay vào A ta được:

\(A=3\left(5-y\right)^2+3y^2-2y+6\left(5-y\right).y-100\)

\(A=75-30y+3y^2+3y^2-2y+30y-6y^2-100\)

\(A=75-100=-25\)

b. Ta có: x - y = 7 ⇒ x = 7 + y

Thay x = 7 + y vào A ta được:

\(A=\left(7+y\right)\left(7+y+2\right)+y\left(y-2\right)-2\left(7+y\right).y+37\)

\(A=y^2+16y+63+y^2-2y-14y-2y^2+37\)

\(A=100\)

c. Ta có: x + 2y = 5 ⇒ x = 5 - 2y

Thay vào A ta có:

\(A=\left(5-2y\right)^2+4y^2-2\left(5-2y\right)+10+4\left(5-2y\right).y-4y\)

\(A=25-20y+4y^2+4y^2-19+4y+10+20y-8y^2-4y\)

\(A=16\)

15 tháng 5 2018

Bài 1 :

\(A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

\(=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)\)

\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(=\left(x^2+5x\right)^2-36\ge-36\)

Vậy \(MIN_A=-36\) . Dấu \("="\) xảy ra khi \(x^2+5x=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

Bài 2 :

a ) \(x+y=5\Rightarrow\left(x+y\right)^2=25\)

\(\Leftrightarrow x^2+2xy+y^2=25\)

\(\Leftrightarrow x^2+y^2=25-2.6=13\)

15 tháng 5 2018

\(B=x^2-4x+1\)

\(B=x^2-4x+4-3\)

\(B=\left(x-2\right)^2-3\ge-3\)

"="<=>x=2

\(C=\dfrac{-4}{x^2-4x+10}\)

Ta có:\(x^2-4x+10=x^2-4x+4+6=\left(x-2\right)^2+6\ge6\)

\(\Rightarrow\dfrac{-4}{x^2-4x+10}\ge-\dfrac{4}{6}=-\dfrac{2}{3}\)

"="<=>x=2

D\(\ge-\dfrac{8}{3}\)<=>x=0,5(tương tự)

26 tháng 10 2017

a) (x + 5)2 - (x - 3)2 = 2x - 7

(x + 5 - x + 3)(x + 5 + x - 3) = 2x - 7

8(2x + 2)= 2x - 7

16x + 16 = 2x - 7

16x - 2x = - 7 - 16

14x = - 23

x = - 23/14

b) (2x - 3)(4x2 + 6x + 9) = 98

(2x)3 - 33 = 98

8x3 - 27 = 98

8x3 = 125

x3 = 125/8

x3 = (5/2)3

x = 5/2

22 tháng 8 2017

1)

\(\Leftrightarrow\left(x^2-2+\dfrac{1}{x^2}\right)+\left(y^2-2+\dfrac{1}{y^2}\right)+z^2=0\)

\(\Leftrightarrow\left(x-\dfrac{1}{x}\right)^2+\left(y-\dfrac{1}{y}\right)^2+z^2=0\)

\(\left\{{}\begin{matrix}x-\dfrac{1}{x}=0\Rightarrow\left|x\right|=1\\y-\dfrac{1}{y}=0\Rightarrow\left|y\right|=1\\z=0\end{matrix}\right.\)

22 tháng 8 2017

dk\(x,y,z,a,b,c\ne0\)\(\left\{{}\begin{matrix}\dfrac{a}{x}=A\\\dfrac{b}{y}=B\\\dfrac{c}{z}=C\end{matrix}\right.\) \(\Rightarrow A,B,C\ne0\)

\(\left\{{}\begin{matrix}A+B+C=2\\\dfrac{1}{A}+\dfrac{1}{B}+\dfrac{1}{C}=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}A^2+B^2+C^2+2\left(AB+BC+AC\right)=4\\\dfrac{ABC}{A}+\dfrac{ABC}{B}+\dfrac{ABC}{C}=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}AB+BC+AC=0\\A^2+B^2+C^2=4\end{matrix}\right.\)

\(\left(\dfrac{a}{x}\right)^2+\left(\dfrac{b}{y}\right)^2+\left(\dfrac{c}{z}\right)^2=4\)