Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biết các cạnh của hình tam giác tỉ lệ với 4 ; 5 ; 3 và chu vi của nó bằng 120. Tính các cạnh của nó.
gọi các cạnh của tam giác lần lượt là a,b,c .
Theo bài ra : a + b + c = 64 và a,b,c tỉ lệ thuận với 3,6,7
\(\Rightarrow\frac{a}{3}=\frac{b}{6}=\frac{c}{7}\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có :
\(\frac{a}{3}=\frac{b}{6}=\frac{c}{7}=\frac{a+b+c}{3+6+7}=\frac{64}{16}=4\)
\(\Rightarrow a=12;b=24;c=28\)
Vậy ...
Gọi a, b, c lần lượt là các cạnh của tam giác đó. Mà a, b, c tỉ lệ thuận với 3, 6, 7 => \(\frac{a}{3}=\frac{b}{6}=\frac{c}{7}\)
Mà chu vi của tam giác đó là 64 cm => a+b+c = 64
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{a}{3}=\frac{b}{6}=\frac{c}{7}=\frac{a+b+c}{3+6+7}=\frac{64}{16}=4\)
\(\frac{a}{3}\)=4 => a = 3.4=12
\(\frac{b}{6}\)= 4 => b = 6.4 = 24
\(\frac{c}{7}\)= 4 => c = 7.4 = 28
Vậy a = 12 , b=24 , c = 28
b1 :
a. gọi độ dài 3 cạnh của tg là a;b;c (a;b;c > 0; m)
vì 3 cạnh lần lượt tỉ lệ với 3;5;7 nên :
a/3 = b/5 = c/7
=> (a+b+c)/(3+5+7) = a/3 = b/5 = c/7 mà a+b+c = 45 (chu vi)
=> 45/15 = a/3 = b/5 = c/7 = 3
=> a = 3.3 = 9; b = 5.3 = 15; c = 7.3 = 21 (tm)
b,
gọi độ dài 3 cạnh của tg là a;b;c (a;b;c > 0; m)
vì 3 cạnh lần lượt tỉ lệ với 3;5;7 nên :
a/3 = b/5 = c/7
=> (a+c-b)/(3+7-5) = a/3 = b/5 = c/7 mà a+c-b = 20
=> 20/5 = a/3 = b/5 = c/7 = 4
=> a = 3.4 = 12; b = 4.5 = 20; c = 4.7 = 28 (tm)
Gọi số cây trồng của lớp 7A, 7B và 7C lần lượt là a, b và c.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{180}{12}=15\)
\(\left[\begin{array}{nghiempt}\frac{a}{3}=15\\\frac{b}{4}=15\\\frac{c}{5}=15\end{array}\right.\)
\(\left[\begin{array}{nghiempt}a=45\\b=60\\c=75\end{array}\right.\)
^^
Gọi độ dài các cạnh của tam giác đó lần lượt là a, b và c.
\(\frac{a}{2}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{2+4+5}=\frac{22}{11}=2\)
\(\left[\begin{array}{nghiempt}\frac{a}{2}=2\\\frac{b}{4}=2\\\frac{c}{5}=2\end{array}\right.\)
\(\left[\begin{array}{nghiempt}a=4\\b=8\\c=10\end{array}\right.\)
^^
Nửa chu vi:
70 : 2 = 35 (cm)
Chiều dài:
35 : (3 + 4) . 4 = 20 (cm)
Chiều rộng:
35 - 20 = 15 (cm)
Diện tích:
20 . 15 = 300 (cm2)
mik giải bài 1 nhé
gọi 3 cạnh của tam giác lần lượ là x y z
ta có x/3=y/4=z/5
theo tính chất dãy tỉ số bằng nhau ta có
x/3=y/4=z/5=x+y+z/3+4+5=36/12=3
x/3=3=>x=9
y/4=3=>y=12
z/5=3=>z=15
chúc bạn học giỏi nha
Ta có: a + b + c = 36
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
a/3 = b/4 = c/5 = (a + b + c)/(3 + 4 + 5) = 36/12 = 3
Độ dài ba cạnh của tam giác vuông là:
a/3 = 3 => a = 9
b/4 = 3 => b = 12
c/5 = 3 => c = 15
Diện tích tam giác vuông đó là: 1/2 . a.b = 1/2 . 9. 12 = 54 (đvdt)
Gọi 3 cạnh của tam giác là a ; b ; c thỏa mãn \(\begin{cases}\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\\a+b+c=36\end{cases}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có :
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{36}{12}=3\)
\(\Rightarrow\begin{cases}a=9\\b=12\\c=15\end{cases}\)
Ta biết trong tam giác vuông , cạnh huyền là cạnh lớn nhất
=> 2 cạnh góc vuông là 9 và 12
\(\Rightarrow S=\frac{9.12}{2}=54\) ( đơn vị diện tích )
Bài 1 :
a ) Vì tam giác ABC có chu vi bằng 24
=> AB + AC + BC = 24
hay a + b + c = 24
Vì 3 cạnh của tam giác ABC tỉ lệ với 3,4,5
=> a/3 = b/4 = c/5
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
a/3 = b/4 = c/5 = ( a + b + c ) / ( 3 + 4 + 5 ) = 24/12 = 2
=> a = 6 ; b = 8 ; c = 10
b ) Vì a = 6 => a2 = 36
b = 8 => b2 = 64
c = 10 => c2 = 100
MÀ 100 = 36 + 64 hay c2 = a2 + b2
Xét tam giác ABC có c2 = a2 + b2 ( cmt )
=> tam giác ABC là tam giác vuông ( định lí đảo định lí pytago )
Vậy ...
Bài 2 :
Đặt a/b = c/d = t ( t khác 0 ) => a = bt ; c = dt
Khi đó :
\(\frac{5a+5b}{5b}=\frac{5bt+5b}{5b}=\frac{5b\left(t+1\right)}{5b}=t+1\)( 1 )
\(\frac{c^2+cd}{cd}=\frac{\left(dt\right)^2+dtd}{dtd}=\frac{d^2t^2+d^2t}{d^2t}=t+1\)( 2 )
Từ ( 1 ) và ( 2 ) ta có dpcm
b ) ( chứng minh tương tự )
4. gọi số cây 3 lớp trồng lần lượt là là x,y,z
ta có : \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\) và x+y+z = 180
áp dụng t/c dãy tỉ số = nhau
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{3+4+5}=\frac{180}{12}=15\)
\(\frac{x}{3}=15\Rightarrow x=45
\)
\(\frac{y}{4}=15\Rightarrow y=60\)
\(\frac{z}{5}=15\Rightarrow z=75\)
vậy lớp 7a trồng dc 45 cây
____7b_______60____
____7c_______75____
chú ý : ________ là giống phía trên
5
gọi số cạnh của các tam giác lần lượt là x,y,z
ta có : \(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}\) và 2.(x+y+z)=22\(\Rightarrow\) x+y+z=11
áp dụng dãy tỉ số = nhau:
\(\frac{x+y+z}{2+4+5}=\frac{11}{11}=1\)
\(\frac{x}{2}=1\Rightarrow x=2\)
\(\frac{y}{4}=1\Rightarrow y=4\)
\(\frac{z}{5}=1\Rightarrow z=5\)
vậy x=2
y=4
z=5
câu 4: Gọi x,y,z lần lượt là số cây của các lớp theo thứ tự 3,4,5. Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{4}=\frac{y}{5}=\frac{z}{6}=\frac{x+y+z}{4+5+6}=\frac{180}{15}=12\)
\(\frac{x}{4}=12=x=12\cdot4=48\)
\(\frac{y}{5}=12=y=12\cdot5=60\)
\(\frac{z}{6}=12=z=12\cdot6=72\)
vậy lớp 7A trồng được 48 cây
lớp 7B trồng được 60 cây
lớp 7C trồng được 72 cây
câu 5:
gọi a,b,c lần lượt là các cạnh của tam giác theo thứ tự 2,4,5.
\(\frac{a}{2}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{2+4+5}=\frac{22}{11}=2\)
\(\frac{a}{2}=2=a=2\cdot2=4\)
\(\frac{b}{4}=2=b=2\cdot4=8\)
\(\frac{c}{5}=2=c=2\cdot5=10\)
vậy các cạnh của tam giác bằng 8,4,10