Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\dfrac{\left(2+\sqrt{3}-1\right)\cdot\sqrt{3}}{\sqrt{7+4\sqrt{3}-2-\sqrt{3}+1}}\)
\(=\dfrac{\left(\sqrt{3}+1\right)\cdot\sqrt{3}}{\sqrt{6+3\sqrt{3}}}=\left(\sqrt{3}+1\right)\cdot\sqrt{\dfrac{1}{2\sqrt{3}+3}}\)
\(=\left(\sqrt{3}+1\right)\cdot\sqrt{\dfrac{\sqrt{3}\left(2-\sqrt{3}\right)}{3}}\)
\(=\left(\sqrt{3}+1\right)\cdot\sqrt{\dfrac{2-\sqrt{3}}{\sqrt{3}}}\)
\(=\sqrt{\dfrac{\left(2-\sqrt{3}\right)\left(4+2\sqrt{3}\right)}{\sqrt{3}}}\)
\(=\sqrt{\dfrac{8-6}{\sqrt{3}}}=\sqrt{\dfrac{2\sqrt{3}}{3}}\)
c: \(=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}+...-\sqrt{1994}+\sqrt{1995}\)
\(=\sqrt{1995}-1\)
1/ Rút gọn: \(a)3\sqrt{2a}-\sqrt{18a^3}+4\sqrt{\dfrac{a}{2}}-\dfrac{1}{4}\sqrt{128a}\left(a\ge0\right)=3\sqrt{2a}-3a\sqrt{2a}+2\sqrt{2a}-2\sqrt{2a}=3\sqrt{2a}\left(1-a\right)\)b)\(\dfrac{\sqrt{2}-1}{\sqrt{2}+2}-\dfrac{2}{2+\sqrt{2}}+\dfrac{\sqrt{2}+1}{\sqrt{2}}=\dfrac{\sqrt{2}-1-2}{\sqrt{2}+2}+\dfrac{\sqrt{2}+1}{\sqrt{2}}=\dfrac{\sqrt{2}-3}{\sqrt{2}+2}+\dfrac{\sqrt{2}+1}{\sqrt{2}}=\dfrac{\sqrt{2}-3+2+1+2\sqrt{2}}{\sqrt{2}\left(1+\sqrt{2}\right)}=\dfrac{3\sqrt{2}}{\sqrt{2}\left(1+\sqrt{2}\right)}=\dfrac{3}{1+\sqrt{2}}\)c)\(\dfrac{2+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{2-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)}{\left(\sqrt{2}+\sqrt{3+\sqrt{5}}\right)\sqrt{2}}+\dfrac{\sqrt{2}\left(2-\sqrt{5}\right)}{\sqrt{2}\left(\sqrt{2}-\sqrt{3-\sqrt{5}}\right)}=\dfrac{2\sqrt{2}+\sqrt{10}}{2+\sqrt{6+2\sqrt{5}}}+\dfrac{2\sqrt{2}-\sqrt{10}}{2-\sqrt{6-2\sqrt{5}}}=\dfrac{2\sqrt{2}+\sqrt{10}}{2+\sqrt{\left(\sqrt{5}+1\right)^2}}+\dfrac{2\sqrt{2}-\sqrt{10}}{2-\sqrt{\left(\sqrt{5}-1\right)^2}}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)}{2+\sqrt{5}+1}+\dfrac{\sqrt{2}\left(2-\sqrt{5}\right)}{2-\sqrt{5}+1}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)}{3+\sqrt{5}}+\dfrac{\sqrt{2}\left(2-\sqrt{5}\right)}{3-\sqrt{5}}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)\left(3-\sqrt{5}\right)+\sqrt{2}\left(2-\sqrt{5}\right)\left(3+\sqrt{5}\right)}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}=\dfrac{\sqrt{2}\left(6-2\sqrt{5}+3\sqrt{5}-5+6+2\sqrt{5}-3\sqrt{5}-5\right)}{9-5}=\dfrac{2\sqrt{2}}{4}=\dfrac{1}{\sqrt{2}}\)
Làm nốt nè :3
\(2.a.P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+1}=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{x}=\dfrac{x-1}{x}\left(x>0;x\ne1\right)\)\(b.P>\dfrac{1}{2}\Leftrightarrow\dfrac{x-1}{x}-\dfrac{1}{2}>0\)
\(\Leftrightarrow\dfrac{x-2}{2x}>0\)
\(\Leftrightarrow x-2>0\left(do:x>0\right)\)
\(\Leftrightarrow x>2\)
\(3.a.A=\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{\sqrt{a}}{a-\sqrt{a}}\right):\dfrac{\sqrt{a}+1}{a-1}=\dfrac{\sqrt{a}-1}{\sqrt{a}-1}.\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}+1}=\sqrt{a}-1\left(a>0;a\ne1\right)\)
\(b.Để:A< 0\Leftrightarrow\sqrt{a}-1< 0\Leftrightarrow a< 1\)
Kết hợp với DKXĐ : \(0< a< 1\)
b) bạn trục mẫu đi nha dựa vào hằng đẳng thức a^2 -b^2=(a-b)(a+b)
rồi bạn tính nói chung mẫu bằng -1
tính cái trên tử kết quả là 4
c) bạn dựa vào câu b .\(\dfrac{1}{\sqrt{3}}=\dfrac{2}{2\sqrt{3}}>\dfrac{2}{\sqrt{3}+\sqrt{4}}\)
từ đó suy ra B > 2A vậy B>8
\(a.A=\sqrt{1+\dfrac{1}{x^2}+\dfrac{1}{\left(x+1\right)^2}}=\sqrt{\left(1+\dfrac{1}{x}\right)^2-\dfrac{2}{x}+\dfrac{1}{\left(x+1\right)^2}}=\sqrt{\left(\dfrac{x+1}{x}\right)^2-2.\dfrac{x+1}{x}.\dfrac{1}{x+1}+\dfrac{1}{\left(x+1\right)^2}}=\sqrt{\left(1+\dfrac{1}{x}-\dfrac{1}{x+1}\right)^2}=\left|x+\dfrac{1}{x}+\dfrac{1}{x+1}\right|\)
\(b.\) Áp dụng điều đã CM ở câu a , ta có :
\(B=\sqrt{1+\dfrac{1}{1^1}+\dfrac{1}{2^2}}+\sqrt{1+\dfrac{1}{2^2}+\dfrac{1}{3^2}}+\sqrt{1+\dfrac{1}{3^2}+\dfrac{1}{4^2}}+...+\sqrt{1+\dfrac{1}{99^2}+\dfrac{1}{100^2}}=1+1-\dfrac{1}{2}+1+\dfrac{1}{2}-\dfrac{1}{3}+1+\dfrac{1}{3}-\dfrac{1}{4}+...+1+\dfrac{1}{99}-\dfrac{1}{100}=100-\dfrac{1}{100}=\)
Bạn thử tham khảo link này nha: https://olm.vn/hoi-dap/question/1294056.html
Bài 6:
a: \(\Leftrightarrow\sqrt{x^2+4}=\sqrt{12}\)
=>x^2+4=12
=>x^2=8
=>\(x=\pm2\sqrt{2}\)
b: \(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}=1\)
=>x+1=1
=>x=0
c: \(\Leftrightarrow3\sqrt{2x}+10\sqrt{2x}-3\sqrt{2x}-20=0\)
=>\(\sqrt{2x}=2\)
=>2x=4
=>x=2
d: \(\Leftrightarrow2\left|x+2\right|=8\)
=>x+2=4 hoặcx+2=-4
=>x=-6 hoặc x=2
a: \(=\dfrac{10}{9}\left(\dfrac{2}{5}\sqrt{5}+\dfrac{1}{2}\sqrt{5}\right)=\dfrac{10}{9}\cdot\dfrac{9}{10}\sqrt{5}=\sqrt{5}\)
b: \(=\dfrac{4}{3}\sqrt{2}+\sqrt{2}+\dfrac{1}{6}\sqrt{2}=\dfrac{5}{2}\sqrt{2}\)
c: \(=\dfrac{\sqrt{5}+1-\sqrt{5}+1}{4}=\dfrac{2}{4}=\dfrac{1}{2}\)
d: \(=6\sqrt{a}+\dfrac{2}{3}\cdot\dfrac{1}{2}\sqrt{a}-3\sqrt{a}+7=\dfrac{10}{3}\sqrt{a}+7\)
Bài 2: a) Ta có: Q=\(\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\) -\(\left(\dfrac{x+2}{\left(\sqrt{x}\right)^3-1}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\right)\) =\(\dfrac{1}{\sqrt{x}-1}\) -\(\left(\dfrac{x+2+\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\) =\(\dfrac{1}{\sqrt{x}-1}-\left(\dfrac{x+2+x-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\) =\(\dfrac{1}{\sqrt{x}-1}-\dfrac{2x}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\) =
\(\sqrt{\dfrac{1}{4}+\dfrac{1}{\left(2n-1\right)^2}+\dfrac{1}{\left(2n+1\right)^2}}=\sqrt{\dfrac{\left(2n-1\right)^2\left(2n+1\right)^2+4\left(2n-1\right)^2+4\left(2n+1\right)^2}{4\left(2n-1\right)^2\left(2n+1\right)^2}}\)
\(=\sqrt{\dfrac{\left(4n^2-1\right)^2+4\left(4n^2-4n+1\right)+4\left(4n^2+4n+1\right)}{4\left(2n-1\right)^2\left(2n+1\right)^2}}\)
\(=\sqrt{\dfrac{16n^4+24n^2+9}{4\left(2n-1\right)^2\left(2n+1\right)^2}}=\sqrt{\dfrac{\left(4n^2+3\right)^2}{4\left(2n-1\right)^2\left(2n+1\right)^2}}=\dfrac{4n^2+3}{2\left(2n-1\right)\left(2n+1\right)}\)
\(=\dfrac{\left(4n^2-1\right)+4}{2\left(2n-1\right)\left(2n+1\right)}=\dfrac{1}{2}+\dfrac{2}{\left(2n-1\right)\left(2n+1\right)}\)
\(=\dfrac{1}{2}+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\)
Do đó:
\(P=\left(\dfrac{1}{2}+\dfrac{1}{1}-\dfrac{1}{3}\right)+\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{5}\right)+...+\left(\dfrac{1}{2}-\dfrac{1}{399}-\dfrac{1}{401}\right)\)
\(=\dfrac{1}{2}.200+1-\dfrac{1}{401}=\dfrac{40500}{401}\)
\(\Rightarrow Q=400\)