Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ đẳng thức : \(\frac{ax-by}{c}=\frac{by-cx}{a}=\frac{cy-az}{b}\)
\(\Rightarrow\frac{c\left(ax-by\right)}{c^2}=\frac{a\left(by-cx\right)}{a^2}=\frac{b\left(cy-az\right)}{b^2}\)
\(\Rightarrow\frac{cax-cby}{c^2}=\frac{abz-acx}{a^2}=\frac{bcy-baz}{b^2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{cax-cby}{c^2}=\frac{abz-acx}{a^2}=\frac{bcy-baz}{b^2}=\frac{cax-cby+abz-cax+bcy-baz}{c^2+a^2+b^2}=0\)
=> \(\hept{\begin{cases}ax=by\\bz=cx\\cy=az\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{b}=\frac{y}{a}\\\frac{x}{b}=\frac{z}{c}\\\frac{y}{a}=\frac{z}{c}\end{cases}\Rightarrow}\frac{x}{b}=\frac{y}{a}=\frac{z}{c}\left(\text{đpcm}\right)}\)
Q(2)=a.22+b.2+c=a.4+b.2+c
Q(-1)=a.(-1)2+b.(-1)+c=a-b+c
Ta có Q(2)+Q(-1)=4a+2b+c+a-b+c=5a+b+2c=0
Như vậy Q(2) và Q(-1) là 2 số đối nhau
=> Tích của chúng luôn nhỏ hơn hoặc bằng 0 ( Bằng 0 khi cả 2 số đều bằng 0)
b) Q(x)=0 với mọi x
=>Q(0)=a.02+b.0+c=0
=>0+0+c=0
=>c=0
Q(1)=a.12+b.1+c=a+b+c=0
Theo câu a, ta có Q(-1)=a-b+c=0 ( vì giả thiết cho đa thức =0 với mọi x)
=>Q(1)-Q(-1)=a+b+c-(a-b+c)=a+b+c-a+b-c=0
=>2b=0
=>b=0
Thay b=0 và c=0 vào đa thức Q(1) ta có a+0+0=0
=>a=0
Vậy a=b=c=0
a, Có: Q(2) = 4a+2b+c
Q(-1) = a - b + c
=> Q(2) + Q(-1) = 5a+b+2c =0
=> Hai số này trái dấu nhau hoặc cùng bằng 0
=> đpcm
b, Có Q(1) = a+b+c = 0 (gt)
Mà Q(-1) = a -b+c = 0
=> a+b+c=a-b+c
=> b = - b
Điều này chỉ xảy ra khi b=0
Lại có Q(0) = c = 0
=> c = 0
Với b=0 ; c=0 ta có Q(x) = ax^2 = 0 với mọi x
<=> a = 0
Vậy a=b=c=0 ( đpcm )
a) Q(2) = a.22 + b.2 + c = 4a + 2b + c
Q(-1) = a.(-1)2 + b.(-1) + c = a - b + c
Cộng vế với vế ta được: Q(2) + Q(-1) = 5a + b + 2c = 0
=> Q(2) = -Q(-1)
=> Q(2).Q(-1) = -Q(-1).Q(-1) = -[Q(-1)]2 \(\le0\) (đpcm)
b) Q(x)=0 với mọi x => Q(0) = 0; Q(1) = 0; Q(-1) = 0
Ta có: Q(0) = a.02 + b.0 + c = 0 => c = 0
Q(1) = a.12 + b.1 + c = a + b + 0 = 0 (1)
Q(-1) = a.(-1)2 + b.(-1) + c = a - b + 0 = 0 (2)
Từ (1) và (2) suy ra Q(1) - Q(-1) = 2b = 0 => b = 0
Thay vào (1) ta có a = 0
Vậy ta có đpcm
a,Q(2) = 4a+2b+c
Q(-1)=a-b+c
Ta có: Q(2)+Q(-1)= 4a+2b+c+a-b+c=5a+b+2c
mà 5a+b+2c=0 => Q(2)=-Q(-1)
Nên Q(2).Q(-1)\(\le\)0
a) Ta có : \(Q\left(2\right)=4a+2b+c\)
\(Q\left(-1\right)=a-b+c\)
\(\Rightarrow Q\left(2\right)+Q\left(-1\right)=5a+b+2c=0\)
\(\Rightarrow Q\left(2\right)=-Q\left(-1\right)\)
\(\Rightarrow Q\left(2\right).Q\left(-1\right)\le0\)
b) Vì \(Q\left(x\right)=0\) với mọi $x$
$\to Q(0) = c=0$
$Q(1) = a+b+c=a+b=0$ $(1)$
$Q(-1) = a-b +c = a-b=0$ $(2)$
Từ $(1)$ và $(2)$ $\to a=b=c=0$
A x B y C
Xét tg ABC có
\(\widehat{C}+\widehat{ABC}+\widehat{BAC}=180^o\) (tổng các góc trong 1 tg bằng 360 độ)
Ta có Ax//By
\(\Rightarrow\widehat{ABy}+\widehat{BAx}=180^o\) (2 góc trong cùng phía)
\(\Rightarrow\widehat{C}+\widehat{ABC}+\widehat{ABy}+\widehat{BAC}+\widehat{BAx}=180^o+180^o=360^o\)
\(\Rightarrow\widehat{C}+\widehat{B}+\widehat{A}=360^o\)