Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lần sau đăng ít 1 thôi đăng nhiều ngại làm, bn đăng nhiều nên tui hướng dẫn sơ qua thôi tự làm đầy đủ vào vở
Bài 1:
Áp dụng BĐT AM-GM ta có:
\(a^4+b^4\ge2a^2b^2;b^4+c^4\ge2b^2c^2;c^4+a^4\ge2c^2a^2\)
Cộng theo vế 3 BĐT trên rồi thu gọn
\(a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)
Áp dụng tiếp BĐT AM-GM
\(a^2b^2+b^2c^2=b^2\left(a^2+c^2\right)\ge2b^2ac\)
Tương tự rồi cộng theo vế có ĐPCM
Bài 2:
Quy đồng BĐT trên ta có:
\(\frac{a^2}{b^2}+\frac{b^2}{a^2}-\frac{a}{b}-\frac{b}{a}\ge0\)
\(\Leftrightarrow\frac{\left(a-b\right)^2\left(a^2+ab+b^2\right)}{a^2b^2}\ge0\) (luôn đúng)
Bài 4: Áp dụng BĐT AM-GM
\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)
\(\Rightarrow\frac{a^3+b^3}{ab}\ge\frac{ab\left(a+b\right)}{ab}=a+b\)
Tương tự rồi cộng theo vế
Bài 5: sai đề tự nhien có dấu - :v nghĩ là +
ai k mình k lại [ chỉ 3 người đầu tiên mà trên 10 điểm hỏi đáp ]
1) \(\Sigma\frac{a}{b^3+ab}=\Sigma\left(\frac{1}{b}-\frac{b}{a+b^2}\right)\ge\Sigma\frac{1}{a}-\Sigma\frac{1}{2\sqrt{a}}=\Sigma\left(\frac{1}{a}-\frac{2}{\sqrt{a}}+1\right)+\Sigma\frac{3}{2\sqrt{a}}-3\)
\(\ge\Sigma\left(\frac{1}{\sqrt{a}}-1\right)^2+\frac{27}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}-3\ge\frac{27}{2\sqrt{3\left(a+b+c\right)}}-3=\frac{3}{2}\)
Bài 2:b) \(9=\left(\frac{1}{a^3}+1+1\right)+\left(\frac{1}{b^3}+1+1\right)+\left(\frac{1}{c^3}+1+1\right)\)
\(\ge3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\therefore\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le3\)
Ta sẽ chứng minh \(P\le\frac{1}{48}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)
Ai có cách hay?
1/Đặt a=1/x,b=1/y,c=1/z ->x+y+z=1.
2a) \(VT=\frac{\left(\frac{1}{a^3}+\frac{1}{b^3}\right)\left(\frac{1}{a}+\frac{1}{b}\right)}{\frac{1}{a}+\frac{1}{b}}\ge\frac{\left(\frac{1}{a^2}+\frac{1}{b^2}\right)^2}{\frac{1}{a}+\frac{1}{b}}\)
\(=\frac{\left[\frac{\left(a^2+b^2\right)^2}{a^4b^4}\right]}{\frac{a+b}{ab}}=\frac{\left(a^2+b^2\right)^2}{a^3b^3\left(a+b\right)}\ge\frac{\left(a+b\right)^3}{4\left(ab\right)^3}\)
\(\ge\frac{\left(a+b\right)^3}{4\left[\frac{\left(a+b\right)^2}{4}\right]^3}=\frac{16}{\left(a+b\right)^3}\)
nhầm
phân thức cuối là:\(\frac{c^2-ab}{2c^2+a^2+b^2}\)
giúp mình nha
Làm như thầy bạn bảo nhé!
BĐT \(\Leftrightarrow\Sigma_{cyc}\frac{2a^2-2bc}{2a^2+b^2+c^2}\ge0\) (nhân 2 vào 2 vế) (*)
\(VT_{\text{(*)}}=\Sigma_{cyc}\left(1-\frac{b^2+c^2+2bc}{2a^2+b^2+c^2}\right)=3-\Sigma_{cyc}\frac{\left(b+c\right)^2}{2a^2+b^2+c^2}\)
\(\ge3-\Sigma_{cyc}\left(\frac{b^2}{a^2+b^2}+\frac{c^2}{a^2+c^2}\right)=0\)
câu a,mình ko biết nhưng câu b bạn cộng 1+b cho số hạng đầu áp dụng cô si,các số hạng khác tương tự rồi cộng vế theo vế,ta có điều phải c/m
BĐt phụ : \(\frac{a^2-ab+b^2}{a^2+ab+b^2}\ge\frac{1}{3}\)
c/m :\(3a^2-3ab+3b^2\ge a^2+ab+b^2\)
↔\(2a^2-4ab+2b^2\ge0\)
↔\(2\left(a-b\right)^2\ge0\)(luôn đúng)
Giải ;
ta có:\(\frac{a^3-b^3}{a^2+ab+b^2}+\frac{b^3-c^3}{b^2+bc+c^2}+\frac{c^3-a^3}{c^2+ac+a^2}=\left(a-b\right)+\left(b-c\right)+\left(c-a\right)=0\)
→\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ac+a^2}\)(1)
mà \(\frac{a^2-ab+b^2}{a^2+ab+b^2}\ge\frac{1}{3}\Leftrightarrow\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}\ge\frac{1}{3}\left(a+b\right)\)
↔\(\frac{a^3+b^3}{a^2+ab+b^2}\ge\frac{1}{3}\left(a+b\right)\)
tương tự ta có:\(\frac{b^3+c^3}{b^2+bc+c^2}\ge\frac{1}{3}\left(b+c\right)\);\(\frac{c^3+a^3}{c^2+ca+a^2}\ge\frac{1}{3}\left(a+c\right)\)
cộng vế vs vế ta có:
\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}+\frac{a^3}{c^2+ac+a^2}\ge\frac{2}{3}\left(a+b+c\right)\)
từ (1)→\(2\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\right)\ge\frac{2}{3}\left(a+b+c\right)\)
↔ \(S\ge\frac{1}{3}\left(a+b+c\right)=1\)(đặt S luôn cho tiện)
dấu = xảy ra khi BĐt ở đầu đúng :\(\begin{cases}a=b\\b=c\\c=a\end{cases}\)mà a+b+c=3↔a=b=c=1
Bài 2: Ta có 2 đẳng thức ngược chiều: \(\frac{8\left(a^2+b^2+c^2\right)}{ab+bc+ca}\ge8;\frac{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b+c\right)^3}\le8\)
Áp dụng BĐT AM-GM ta có:
\(\frac{8\left(a^2+b^2+c^2\right)}{ab+bc+ca}+\frac{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b+c\right)^3}\)\(\ge2\sqrt{\frac{8\left(a^2+b^2+c^2\right)}{ab+bc+ca}.\frac{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b+c\right)^3}}\)
Suy ra BĐT đã cho là đúng nếu ta chứng minh được
\(27\left(a^2+b^2+c^2\right)\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(ab+bc+ca\right)\left(a+b+c\right)^3\left(1\right)\)
Sử dụng đẳng thức \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)và theo AM-GM: \(abc\le\frac{1}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)ta được \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\left(2\right)\)
Từ (1)và(2) suy ra ta chỉ cần chứng minh \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)đúng=> đpcm
Đẳng thức xảy ra khi và chỉ khi a=b=c
Bài 3:
Ta có 2 BĐT ngược chiều: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2};\sqrt[3]{\frac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\le\sqrt[3]{\frac{1}{8}}=\frac{1}{2}\)
Bổ đề: \(x^3+y^3+z^3+3xyz\ge xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)\left(1\right)\forall x,y,z\ge0\)
Chứng minh: Không mất tính tổng quát, giả sử \(x\ge y\ge z\). Khi đó:
\(VT\left(1\right)-VP\left(1\right)=x\left(x-y\right)^2+z\left(y-z\right)^2+\left(x-y+z\right)\left(x-y\right)\left(y-z\right)\ge0\)
Áp dụng BĐT AM-GM ta có:
\(\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\ge64\left(abc\right)^2\)\(\Leftrightarrow\frac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\left[\frac{4abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right]^3\)
Suy ra ta chỉ cần chứng minh \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\frac{4abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge2\)
\(\Leftrightarrow a\left(a+b\right)\left(a+c\right)+b\left(b+c\right)\left(b+a\right)+c\left(c+a\right)\left(c+b\right)+4abc\)\(\ge2\left(a+b\right)\left(b+c\right)\left(c+a\right)\)\(\Leftrightarrow a^3+b^3+c^3+3abc\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)đúng theo bổ đề
Đẳng thức xảy ra khi và chỉ khi a=b=c hoặc a=b,c=0 và các hoán vị
Kẻ BM và CN vuông góc với AD
a) AC.sin\(\frac{A}{2}\)=CN \(\le\) CD ; AB.sin\(\frac{A}{2}\)=BM \(\le\) BD
=> (AC+AB)sin\(\frac{A}{2}\)\(\le\) CD+BD = BC hay (b+c)sin\(\frac{A}{2}\)\(\le\)a <=> sin\(\frac{A}{2}\le\frac{a}{b+c}\)
dấu '=' xảy ra khi M,N, D trùng nhau hay tam giác ABC cân ở A
b) làm tương tự ta có sin\(\frac{B}{2}\le\frac{b}{a+c}\); sin\(\frac{C}{2}\le\frac{c}{a+b}\)
=> sin\(\frac{A}{2}.sin\frac{B}{2}.sin\frac{C}{2}\le\frac{a.b.c}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\) (1)
mà (a+b)(b+c)(c+a) \(\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}\)=8a.b.c => (1) \(\le\frac{1}{8}\)
dấu '=' khi a=b=c hay tam giác ABC là tam giác đều
c) xét 2 tam giác CND và tam giác BMD có CN // BM ( đều vuông góc với AD) nên \(\widehat{NCD}=\widehat{MBD}\); lại có \(\widehat{NDC}=\widehat{BDM}\)
=> là 2 tam giác đồng dạng => \(\frac{DN}{DM}=\frac{NC}{MB}=\frac{AC.sin\frac{A}{2}}{AB.sin\frac{A}{2}}=\frac{b}{c}=>DN=DM.\frac{b}{c}\)
AD = AM+MD => \(\frac{b}{c}AD=\frac{b}{c}AM+\frac{b}{c}MD\)
AD= AN-ND
=>cộng vế theo vế ta được AD(\(\frac{b}{c}+1\)) = \(\frac{b}{c}\)AM+\(\frac{b}{c}MD\)+ AN - ND = \(\frac{b}{c}AM+AN\)= \(\frac{b}{c}ABcos\frac{A}{2}+ACcos\frac{A}{2}\)=\(\frac{b}{c}.c.cos\frac{A}{2}+bcos\frac{A}{2}\)= 2b.\(cos\frac{A}{2}\)
=> AD(\(\frac{b+c}{c}\)) = 2b\(cos\frac{A}{2}\) <=> AD= \(\frac{2bc.cos\frac{A}{2}}{b+c}\)
Ta có A = \(\frac{a^2}{1bc}+\frac{b^2}{ac}+\frac{c^2}{ab}=\frac{a^3++b^3+c^3}{abc}\)
Xét phần tử ta có
a3 + b3 + c3
= a3 + b3 + 3ab(a + b) + c3 - 3ab(a + b)
= (a + b)3 + c3 - 3ab(a + b)
= (a + b + c)[(a + b)2 - c(a + b) + c2] - 3ab(a + b)
= - 3ab(-c)
= 3abc
Thế vào tìm được A = 3
vì a+b+c=0
=>a;b;c=0
Ta có a^2/bc+b^2/ac+c^2/ab
=> A=0