K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2017

chup lai đi mờ quá

21 tháng 7 2017

Ta có: \(a+b+c=0\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\end{matrix}\right.\)

Lại có: \(a^3+a^2c-abc+b^2c+b^3\)

\(=a^2\left(a+c\right)+b^2\left(c+b\right)-abc\)

\(=a^2\left(-b\right)+b^2\left(-a\right)-abc\)

\(=-ab\left(a+b+c\right)=\left(-ab\right).0=0\) (đpcm)

31 tháng 12 2018

\(\text{Ta có: }\)\(\left(a+b+c\right)^2=a^2+b^2+c^2\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=a^2+b^2+c^2\)

\(\Rightarrow ab+bc+ca=0\Rightarrow-ab=bc+ca\)

\(VT=\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{b^3c^3+a^3b^3+a^3c^3}{\left(abc\right)^3}\)

\(=\dfrac{\left(bc+ca\right)^3-3abc^2\left(bc+ca\right)+\left(ab\right)^3}{\left(abc\right)^3}\)

\(=\dfrac{\left(-ab\right)^3+3\left(abc\right)^2+\left(ab\right)^3}{\left(abc\right)^3}=\dfrac{\left[-\left(ab\right)^3+\left(ab\right)^3+3\left(abc\right)^2\right]}{\left(abc\right)^3}\)

\(=\dfrac{3\left(abc\right)^2}{\left(abc\right)^3}=\dfrac{3}{abc}=VP\)

AH
Akai Haruma
Giáo viên
29 tháng 12 2018

Bạn tham khảo tại đây:

Câu hỏi của Hoàng Tuấn - Toán lớp 8 | Học trực tuyến

4 tháng 11 2015

Ta có: a^3 + a^2c – abc + b^2c + b^3 = (a^3 + b^3) + (a^2c – abc + b^2c) = (a + b)( a^2 – ab + b^2) + c(a62 – ab + b^2) = (a + b + c)(a^2 – ab + b^2) = 0 ( Vì a + b + c = 0 theo giả thiết) Vậy: a3 +a2c – abc + b2c + b3 = 0

12 tháng 7 2018

Ta có :

\(a^3+a^2c-abc+b^2c+b^3=0\)

\(\Leftrightarrow\left(a^3+b^3\right)+\left(a^2c-abc+b^2c\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)=0\)

\(\Leftrightarrow\left(a^2-ab+b^2\right)\left(a+b+c\right)=0\) ( Luôn đúng vì \(a+b+c=0\) )

Wish you study well !!

22 tháng 8 2019

Solution:

\(a^3+a^2c-abc+b^2c+b^3\)

\(=a^2\left(a+c\right)+b^2\left(b+c\right)-abc\)

\(=a^2\cdot\left(-b\right)+b^2\cdot\left(-a\right)-abc\)

\(=-ab\left(a+b+c\right)\)

\(=0\)

22 tháng 8 2019

Ta có:

\(a^3+a^2c-abc+b^2c+b^3=\left(a^3+b^3\right)+\left(a^2c-abc+b^2c\right)\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)\)

\(=\left(a+b+c\right)\left(a^2-ab+b^2\right)=0\)

\(a+b+c=0\) nên \(a^3+a^2c-abc+b^2c+b^3=0\)

24 tháng 10 2016

Ta có:

\(A=a^3+a^2c-abc+b^2c+b^3=0\Rightarrow\left(a^3+b^3\right)+\left(a^2c+b^2c-abc\right)=0\)

\(\Rightarrow\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)=0\Rightarrow\left(a+b+c\right)\left(a^2-ab+b^2\right)=0\)

Mà theo giả thiết thì \(a+b+c=0\Rightarrow A=0\)

P/s: Lười ghi nên đổi thành A nhé ;)