K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 5 2021

\(a+b+c=0\)

\(\Leftrightarrow\left(a+b+c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)

\(\Leftrightarrow ab+bc+ca=-\dfrac{a^2+b^2+c^2}{2}\)

Mà \(-\dfrac{a^2+b^2+c^2}{2}\le0\Rightarrow ab+bc+ca\le0\)  ;\(\forall a;b;c\) (đpcm)

28 tháng 4 2017

a+b+c=0

<=>(a+b+c)^2=0

<=>a^2+b^2+c^2+2(ab+bc+ca)=0

Mà a^2+b^2+c^2>=0 với mọi a,b,c

=>ab+bc+ca<=0 với mọi a,b,c.

Dấu "="xảy ra<=>a=b=c=0.

16 tháng 4 2019

Từ a+b+c=0 =>c=-a-b.thay vào có: 
ab+bc+ca= ab-(a+b)^2= -(a^2+ab+b^2)= -1/2[(a+b)^2+a^2+b^2)] 
vì (a+b)^2>=0, a^2>=0,b^2>=0 nên biểu thức này luôn luôn =<0. Dấu = xảy ra khi a=b=c=0.

16 tháng 8 2017

\(\left\{{}\begin{matrix}a+b+c>0\left(1\right)\\ab+bc+ac>0\left(2\right)\\abc>0\left(3\right)\end{matrix}\right.\)

Giả sử trong ba số a,b,c có một số âm hay bằng o . Giả sử số đó là a.

Khi đó : (1) ==> b + c > -a \(\ge\) 0 ==> a(b+c) \(\le0\)

Do đó : (2) ==> bc + a(b+c) > 0 ==> bc > -a ( b+c) \(\ge\) 0 . Mà a < 0 ==> abc < 0 (vô lí vì abc >0 do (3))

Vậy cả ba số a , b ,c đều dương

1 tháng 5 2019
https://i.imgur.com/QWNY33W.jpg
4 tháng 9 2017

ta áp dụng cô-si la ra 
a^2+b^2+c^2 ≥ ab+ac+bc 
̣̣(a - b)^2 ≥ 0 => a^2 + b^2 ≥ 2ab (1) 
(b - c)^2 ≥ 0 => b^2 + c^2 ≥ 2bc (2) 
(a - c)^2 ≥ 0 => a^2 + c^2 ≥ 2ac (3) 
cộng (1) (2) (3) theo vế: 
2(a^2 + b^2 + c^2) ≥ 2(ab+ac+bc) 
=> a^2 + b^2 + c^2 ≥ ab+ac+bc 
dấu = khi : a = b = c

4 tháng 9 2017

Bạn cm hộ mình cô si la dc k mình chưa học đến

14 tháng 7 2017

Ta có: \(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\Rightarrow a^2+b^2+c^2+2ab+2ac+2bc=0\)

\(\Rightarrow\left(a^2+b^2+c^2\right)+2.\left(ab+ac+bc\right)=0\)

Do \(a^2+b^2+c^2\ge0\) với mọi x \(\Rightarrow\left(a^2+b^2+c^2\right)+2.\left(ab+ac+bc\right)=0\)

\(\Leftrightarrow2.\left(ab+ac+bc\right)\le0\Rightarrow ab+ac+bc\le0\)

Vậy nếu a,b,c là 3 số thực thỏa mãn a+b+c=0 thì \(ab+ac+bc\le0\)

10 tháng 8 2017

Ta luôn luôn có:

(a+b+c)2\(\ge\)3(ab+bc+ac)\(\ge\)ab+bc+ac (vì \(a^2+b^2+c^2\ge ab+bc+ac\))(*)

Từ (*) suy ra: 0 > ab+bc+ac (đpcm)

NV
8 tháng 6 2019

Ta chứng minh: \(a^3+b^3\ge ab\left(a+b\right)\)

Thực vậy, BĐT tương đương:

\(a^3+b^3-a^2b-ab^2\ge0\Leftrightarrow a^2\left(a-b\right)-b^2\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng với a; b dương)

Vậy BĐT được chứng minh

Tương tự ta có: \(b^3+c^3\ge bc\left(b+c\right)\); \(c^3+a^3\ge ca\left(c+a\right)\)

Cộng vế với vế:

\(2\left(a^3+b^3+c^3\right)\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)

\(\Rightarrow\frac{a^3+b^3+c^3}{ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)}\ge\frac{a^3+b^3+c^3}{2\left(a^3+b^3+c^3\right)}=\frac{1}{2}\)

Dấu "=" xảy ra khi \(a=b=c\)