Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng bất đằng thức buinhia
\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\Leftrightarrow1\le2\left(a^2+b^2\right)\Rightarrow a^2+b^2\ge\frac{1}{2}\)
\(\left(a^2+b^2\right)^2\le\left(\left(a^2\right)^2+\left(b^2\right)^2\right)2\Leftrightarrow\left(\frac{1}{2}\right)^2\le2\left(a^4+b^4\right)\Rightarrow a^4+b^4\ge\frac{1}{8}\)
bài cuối tương tự
a, \(a^2+b^2\ge\frac{1}{2}\)
Với mọi a, b ta có:
\(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge a^2+2ab+b^2\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
Mà a + b = 1 \(\Rightarrow2\left(a^2+b^2\right)\ge1\)
\(\Leftrightarrow a^2+b^2\ge\frac{1}{2}\)
Vậy \(a^2+b^2\ge\frac{1}{2}\)( đpcm )
Các câu b, c tương tự
Áp dụng bđt Cauchy-Schwarz:
\(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}=\dfrac{1}{2}\)
\(a^4+b^4\ge\dfrac{\left(a^2+b^2\right)^2}{2}\ge\dfrac{\left(\dfrac{1}{2}\right)^2}{2}=\dfrac{1}{8}\)
\(a^8+b^8\ge\dfrac{\left(a^4+b^4\right)^2}{2}\ge\dfrac{\left(\dfrac{1}{8}\right)^2}{2}=\dfrac{1}{128}\)
a=1.....1(2n số 1)=1....1(n số 1).10n +1...1(n số 1)
b=1...1(n+1 số 1)=1...1(n số 1).10+1
c=6...6(n số 6)=6.1...1(n số1)
Đặt m=1...1(n số 1) => 10n =9m+1
a+b+c+8=m.(9m+2)+10m+1+6m+8=9m^2+18m+9=(3m+3)^2 là số chính phương
Câu a : Ta có :
\(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\)
\(=2^{16}-1< 2^{16}\)
Vậy \(A>B\)
Câu b : Ta có :
\(A=4\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(=\dfrac{8\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)}{2}\)
\(=\dfrac{\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)}{2}\)
\(=\dfrac{\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)}{2}\)
\(=\dfrac{...\left(3^{64}-1\right)\left(3^{64}+1\right)}{2}\)
\(=\dfrac{3^{128}-1}{2}< 3^{128}-1\)
Vậy \(A< B\)
Xét biểu thức A
\(A=8\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(=\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(...=\left(3^{64}-1\right)\left(3^{64}+1\right)=3^{128}-1\)
Vậy \(A=B\)
áp dụng bất đẳng thức \(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)ta có:
\(\left(a^8+b^8\right)\ge\frac{1}{2}\left(a^4+b^4\right)^2\)
\(\left(a^4+b^4\right)\ge\frac{1}{2}\left(a^2+b^2\right)^2\)
\(a^2+b^2\ge\frac{1}{2}\left(a+b\right)^2=1\)
từ các bất đẳng thức trên =>đpcm