\(a^2+b^2=7\). Tính \(a^4+b^4\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2021

Ta có: \(ab=\dfrac{\left(a+b\right)^2-\left(a^2+b^2\right)}{2}=1\).

\(a^4+b^4=\left(a^2+b^2\right)-2a^2b^2=7^2-2=47\).

Sai một chút rồi bạn!

Cái chỗ \(a^4+b^4=\left(a^2+b^2\right)^2-2a^2b^2\) mới đúng bạn ạ!

20 tháng 10 2018

tách ra như bth ấy

20 tháng 10 2018

Câu 1 :

a) \(x^3-5x^2-14x\)

\(=x^3-7x^2+2x^2-14x\)

\(=x^2\left(x-7\right)+2x\left(x-7\right)\)

\(=\left(x-7\right)\left(x^2+2x\right)\)

\(=x\left(x-7\right)\left(x+2\right)\)

b) \(a^4+a^2+1\)

\(=\left(a^2\right)^2+2a^2+1-a^2\)

\(=\left(a^2+1\right)-a^2\)

\(=\left(a^2-a+1\right)\left(a^2+a+1\right)\)

c) \(x^4+64\)

\(=\left(x^2\right)^2+2\cdot x^2\cdot8+8^2-2\cdot x^2\cdot8\)

\(=\left(x^2+8\right)^2-\left(4x\right)^2\)

\(=\left(x^2-4x+8\right)\left(x^2+4x+8\right)\)

Câu 2 :

a) \(\left(a-b\right)^2=a^2-2ab+b^2\)

Ta có : \(\left(a+b\right)^2=a^2+2ab+b^2\)

\(\Rightarrow a^2+b^2=\left(a+b\right)^2-2ab=7^2-2\cdot14=25\)

\(\Rightarrow\left(a-b\right)^2=25-2\cdot12=1\)

b) tương tự

4 tháng 7 2018

2/

a,Ta có: a+b+c=0

<=>(a+b+c)2=0

<=>a2+b2+c2+2(ab+bc+ca)=0

<=>2+2(ab+bc+ca)=0

<=>ab+bc+ca=\(\frac{-2}{2}=-1\)

<=>(ab+bc+ca)2=1

<=>a2b2+b2c2+c2a2+2abc(a+b+c)=1

<=>a2b2+b2c2+c2a2=1 (vì a+b+c=0)

Lại có: a2+b2+c2=2

<=>(a2+b2+c2)2=4

<=>a4+b4+c4+2(a2b2+b2c2+c2a2)=4

<=>a4+b4+c4+2=4 (vì a2b2+b2c2+c2a2=1)

<=>a4+b4+c4=2

b, tương tự a

4 tháng 7 2018

1/

b, \(B=9x^2-6x+2=9x^2-6x+1+1=\left(3x-1\right)^2+1\)

Vì \(\left(3x-1\right)^2\ge0\Rightarrow B=\left(3x-1\right)^2+1\ge1\)

Dấu "=" xảy ra khi x=1/3

Vậy Bmin = 1 khi x = 1/3

c,\(C=x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow C=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu "=" xảy ra khi x=-1/2

Vậy...

d, \(D=2x^2+2x+1=2\left(x^2+x+\frac{1}{2}\right)=2\left(x^2+x+\frac{1}{4}+\frac{1}{4}\right)=2\left(x+\frac{1}{2}\right)^2+\frac{1}{2}\)

Vì \(2\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow D=2\left(x+\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)

Dấu "=" xảy ra khi x=-1/2

Vậy...

20 tháng 4 2017

Bài giải:

a) (a + b)2 = (a – b)2 + 4ab

- Biến đổi vế trái:

(a + b)2 = a2 +2ab + b2 = a2 – 2ab + b2 + 4ab

= (a – b)2 + 4ab

Vậy (a + b)2 = (a – b)2 + 4ab

- Hoặc biến đổi vế phải:

(a – b)2 + 4ab = a2 – 2ab + b2 + 4ab = a2 + 2ab + b2

= (a + b)2

Vậy (a + b)2 = (a – b)2 + 4ab

b) (a – b)2 = (a + b)2 – 4ab

Biến đổi vế phải:

(a + b)2 – 4ab = a2 +2ab + b2 – 4ab

= a2 – 2ab + b2 = (a – b)2

Vậy (a – b)2 = (a + b)2 – 4ab

Áp dụng: Tính:

a) (a – b)2 = (a + b)2 – 4ab = 72 – 4 . 12 = 49 – 48 = 1

b) (a + b)2 = (a – b)2 + 4ab = 202 + 4 . 3 = 400 + 12 = 412

13 tháng 7 2017

CMR: (a + b)2 = (a - b)2 + 4ab

(a - b)2 = (a + b)2 - 4ab

Ta có: (a + b)2 = a2 + 2ab + b2

= a2 +2ab + b2 - 2ab +2ab

= a2 - 2ab + b2 + 2ab +2ab

= (a - b)2 +4ab

Ta có: (a - b)2 = a2 - 2ab + b2

= a2 - 2ab + b2 + 2ab - 2ab

= a2 + 2ab + b2 - 2ab - 2ab

= (a + b)2 - 4ab

Áp dụng:

a) Tính (a - b)2 , biết a + b = 7 và a.b = 12

Ta có: (a - b)2 = (a + b)2 - 4ab

= 72 - 4.12

= 49 - 48

Vậy (a - b)2 = 1

b) Tính (a + b)2 , biết a - b = 7 và a.b = 3

Ta có: (a + b)2 = (a - b)2 + 4ab

= 72 + 4.3

= 49 + 12

Vậy ( a + b)2 = 61

19 tháng 8 2017

Ta có: a + b + c = 0

=> ( a + b + c )= 0

=> a2 + b2 + c2 + 2ab +2ac+ 2bc = 0

=> 2 + 2( ab + ac + bc ) = 0

=> 2( ab + ac +bc ) = - 2

=> ab + ac + bc = -1 

=> ( ab + ac + bc )2 = 1

=> a2b2 + a2c2 + b2c2 + 2a2bc + 2ab2c + 2abc2 = 1

=> a2b2 + a2c2 + b2c2 + 2abc( a + b + c ) = 1

=> a2b2 + a2c2 + b2c+ 2abc x 0 = 1

=> a2b2 + a2c2 + b2c2 = 1 ( * )

Ta có: a2 + b2 + c2 = 2

=> ( a+ b2 + c2 )2 = 22

=> a4 + b4 + c4 + 2a2b2 + 2a2c2 + 2b2c2 = 4

=> a4 + b4 + c+ 2( a2b2 + a2c2 + b2c2 ) = 4

Từ ( * ) => a4 + b4 + c4 + 2 x 1 = 4

=> a4 + b4 + c4 = 4 - 2 = 2 

~~~~ 

Phần còn lại tương tự, cậu tự làm nhóe :3 Chúc cậu học tốt ~~

24 tháng 8 2017

minh lam xong roi moi tra loi

4 tháng 12 2016

Ta có

\(a+b+c=0\Leftrightarrow a=-b-c\)

\(\Leftrightarrow a^2=b^2+c^2+2bc\)

\(\Leftrightarrow a^2-b^2-c^2=2bc\)

\(\Leftrightarrow a^4+b^4+c^4-2a^2b^2-2a^2c^2+2b^2c^2=4b^2c^2\)

\(\Leftrightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

Ta lại có

\(a^2+b^2+c^2=2\)

\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\)

\(\Leftrightarrow2\left(a^4+b^4+c^4\right)=4\)

\(\Leftrightarrow a^4+b^4+c^4=2\)

Câu còn lại tương tự nhé

11 tháng 6 2019

Bạn bổ sung để nha bạn

Chúc bạn học tốt !!!

...

11 tháng 6 2019

Từ \(a+b+c=0\Rightarrow b+c=-a\Rightarrow\left(b+c\right)^2=a^2.\)

\(\Leftrightarrow b^2+2bc+c^2=a^2\Leftrightarrow a^2-b^2-c^2=2bc\)

\(\Rightarrow\left(a^2-b^2-c^2\right)^2=4b^2c^2\)

\(\Leftrightarrow a^4+b^4+c^4-2a^2b^2+2b^2c^2-2a^2c^2=4b^2c^2\)

\(\Leftrightarrow a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2\)

\(\Leftrightarrow2\left(a^4+b^4+c^4\right)=a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2\)

\(\Leftrightarrow a^4+b^4+b^4=\frac{\left(a^2+b^2+c^2\right)^2}{2}\)

Bạn thay giá trị của \(a^2+b^2+c^2\)vào nha

21 tháng 7 2016

Bài 2 :

Ta có: (10a + 5)2 = (10a)2 + 2 .10a . 5 + 52

                          = 100a2 + 100a + 25

                          = 100a(a + 1) + 25.

Cách tính nhẩm bình thường của một số tận cùng bằng chữ số 5;

Ta gọi a là số chục của số tự nhiên có tận cùng bằng 5 => số đã cho có dạng 10a + 5 và ta được

(10a + 5)2 = 100a(a + 1) + 25

Vậy để tính bình phương của một số tự nhiên có tận cùng bởi chữ số 5 ta tính tích a(a + 1) rồi viết 25 vào bên phải.

Áp dụng;

- Để tính 252 ta tính 2(2 + 1) = 6 rồi viết tiếp 25 vào bên phải ta được 625.

- Để tính 352 ta tính 3(3 + 1) = 12 rồi viết tiếp 25 vào bên phải ta được 1225.

- 652 = 4225

- 752 = 5625.

 

21 tháng 7 2016

Bài 4 : 

a) 342 + 662 + 68 . 66 = 342 + 2 . 34 . 66 + 662 = (34 + 66)2 = 1002 = 10000.

b) 742 + 242 – 48 . 74 = 742 - 2 . 74 . 24 + 242 = (74 - 24)

 =502 =2500

 

13 tháng 7 2016

làm a) còn b);c) tương tự

A = (a + b) - 2ab = 100 - 8  = 92

16 tháng 8 2018

Ta có \(\left(a^2+b^2+c^2\right)^2=4\Rightarrow a^4+b^4+c^4=4-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

Mà \(\left(a+b+c\right)^2=0\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)=2\)

=> \(ab+bc+ca=-1\Rightarrow\left(ab+bc+ca\right)^2=1\)

=> \(a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=1\Rightarrow a^2b^2+b^2c^2+c^2a^2=1\)

=> \(a^4+b^4+c^4=4-2=2\)

^.^

16 tháng 8 2018

Theo bài ra ta có : a2 + b2 + c2 = 2 .

Do đó : ( a2 + b2 + c2 )2 = 22 .

      ⇒      a4 + b4 + c4     = 4 .

Vậy  a4 + b4 + c4 = 4 .

20 tháng 2 2017

\(\left(a^2+b^2\right)^2=a^4+b^4+2a^2b^2=49\)(*)

Có: \(\left(a+b\right)^2=a^2+b^2+2ab=7+2ab=9\Leftrightarrow ab=1\)

Thay ab=1 vào (*)  ta được \(a^4+b^4+2a^2b^2=a^4+b^4+2=49\Leftrightarrow a^4+b^4=47\)