Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^3-4x^3+8x-8\)
\(=x^3-8+8x-4x^2\)
\(=\left(x-2\right)\left(x^2-2x+4\right)+4x\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2-2x+4+4x\right)=\left(x-2\right)\left(x^2+2x+4\right)\)
Bài 1:
Theo đầu bài ta có:
\(a+b+c=0\Rightarrow\hept{\begin{cases}a+b=-c\\a+c=-b\\b+c=-a\end{cases}}\)
Từ đó suy ra:
\(H=a\cdot\left(a+b\right)\cdot\left(a+c\right)\)
\(=a\cdot-c\cdot-b\)
\(=a\cdot b\cdot c\)
\(K=c\cdot\left(c+a\right)\cdot\left(c+b\right)\)
\(=c\cdot-b\cdot-a\)
\(=a\cdot b\cdot c\)
Vậy H = K ( đpcm )
Này bạn, tớ thấy bài 1 đề phải là a + b + c = 0 chứ. Sao lại a + b + b = 0 được
Đăng từng bài thui bn êi ~.~
\(h)\)\(\left(xy+1\right)^2-\left(x+y\right)^2\)
\(=\)\(\left(xy-x-y+1\right)\left(xy+x+y+1\right)\)
\(=\)\(\left[x\left(y-1\right)-\left(y-1\right)\right].\left[x\left(y+1\right)+\left(y+1\right)\right]\)
\(=\)\(\left(x-1\right)\left(y-1\right)\left(x+1\right)\left(y+1\right)\)
\(i)\)\(16b^2c^2-4\left(b^2+c^2-a^2\right)^2\)
\(=\)\(\left(4bc\right)^2-\left(2b^2+2c^2-2a^2\right)^2\)
\(=\)\(\left(4bc-2b^2-2c^2+2a^2\right)\left(4bc+2b^2+2c^2-2a^2\right)\)
\(=\)\(2\left[a^2-\left(b^2-2bc+c^2\right)\right].2\left[\left(b^2+2bc+c^2\right)-a^2\right]\)
\(=\)\(-4\left[a^2-\left(b-c\right)^2\right].\left[a^2-\left(b+c\right)^2\right]\)
\(=\)\(-4\left(a-b+c\right)\left(a+b-c\right)\left(a-b-c\right)\left(a+b+c\right)\)
Chúc bạn học tốt ~
B1:
a, \(4x^2+y\left(y-4x\right)-9\)
\(=4x^2+y^2-4xy-9\)
\(=\left(x-y\right)^2-3^2\)
\(=\left(x-y+3\right)\left(x-y-3\right)\)
1.
b) \(a^2-b^2+a-b\)
\(=\left(a^2-b^2\right)+\left(a-b\right)\)
\(=\left(a-b\right)\left(a+b+1\right)\)
a) x4-4x3+4x2
= x2(x2-4x+4)
= x2(x-2)2
b) 2ab2-a2b-b3
= -b(-2ab+a2+b2)
=-b(a-b)2
e) x3+3x2-3x-1
= x3-x2+4x2-4x+x-1
=(x3-x2)+(4x2-4x)+(x-1)
=x2(x-1)+4x(x-1)+(x-1)
(x-1)(x2+4x+1)
f) x3-3x2-3x+1
=x3+x2-4x2-4x+x+1
=(x3+x2)-(4x2+4x)+(x+1)
=x2(x+1)-4x(x+1)+(x+1)
=(x+1)(x2-4x+1)
g)x3-4x2+4x-1
=x3-x2-3x2+3x+x-1
=(x3-x2)-(3x2-3x)+(x-1)
=x2(x-1)-3x(x-1)+(x-1)
=(x-1)(x2-3x+1)
a + b = 1 => (a+b)2 = 1 => a2 + 2ab + b2 = 1 => a2 + b2 = 1 - 2ab = 1 - \(\frac{1}{2}\) = 1/2 =H
K = a3 + b3 = (a + b)(a2 - ab + b2) = 1 x ( 1/2 - 1/4 )= 1/4.