Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: Cho \(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}\)
Giải:
Dặt \(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}=k\Rightarrow\hept{\begin{cases}a=ka'\\b=kb'\\c=kc'\end{cases}}\)
Ta có:
\(\frac{a-3b+2c}{a'-3b'-2c'}=\frac{ka'-3kb'+2kc'}{a'-3b'+2c'}=\frac{k\left(a'-3b'+2c'\right)}{a'-3b'+2c'}=k=\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}\)
\(từ:\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}\Rightarrow\frac{a}{a'}=\frac{3b}{3b'}=\frac{2c}{2c'}=2018\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{a}{a'}=\frac{3b}{3b'}=\frac{2c}{2c'}=\frac{a-3b+2c}{a-3b'+2c}=2018\)
a) Vì \(\dfrac{a}{a'}=\dfrac{b}{b'}=\dfrac{c}{c'}=4\)
\(\Rightarrow\left\{{}\begin{matrix}a=4a'\\b=4b'\\c=4c'\end{matrix}\right.\)
\(\Rightarrow\dfrac{a+b+c}{a'+b'+c'}=\dfrac{4a'+4b'+4c'}{a'+b'+c'}\)\(=\dfrac{4\left(a'+b'+c'\right)}{a'+b'+c'}=4\)
b)\(\Rightarrow\dfrac{a-3b+2c}{a'-3b'+2c'}=\dfrac{4a'-3\cdot4b'+2\cdot4c'}{a'-3b'+2c'}\)\(=\dfrac{4a'-12b'+8c'}{a'-3b'+2c'}\)\(=\dfrac{4\left(a'-3b'+2c'\right)}{a'-3b'+2c'}=4\)