a/a=b/b=c/c= va a+b+c≠0

Tinh ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2018

do a+b+c khác 0,ta có:

\(\frac{a+b+c}{a+b+c}=1\)

do tử cùng mẫu

^hok tốt^

30 tháng 11 2018

bằng 1

1 tháng 12 2018

Ta có: \(\dfrac{a}{a}=\dfrac{b}{b}=\dfrac{c}{c}=1\) (luôn đúng)

Suy ra \(\dfrac{a}{a}=\dfrac{b}{b}=\dfrac{c}{c}=4\) (vô lí)

=> Đề sai =))

26 tháng 11 2016

Ta có: a/b=b/c=c/d=d/a áp dụng tính chất dãy tỉ số bằng nhau ta được:

a/b=b/c=c/d=d/a=(a+b+c+d)/(a+b+c+d)=1

Do đó: a/b=1 suy ra a=b (1) ; b/c=1 suy ra b=c (2) ; c/d=1 suy ra c=d (3) ; d/a=1 suy ra d=a (4)

Từ (1),(2),(3),(4) ta được: a=b=c=d

Suy ra:P=(2a-a)/(a+a)+(2a-a)/(a+a)+(2a-a)/(a+a)+(2a+a)/(a+a)

=4.a/2a=4.1/2=2

Vậy P=2

26 tháng 11 2016

thanks ban nha

4 tháng 9 2019

Ta có:M=\(\frac{a^{10}b^7c^{2000}}{b^{2017}}\)=\(\frac{a^{10}}{b^{10}}\)x\(\frac{b^7}{b^7}\)x\(\frac{c^{2000}}{b^{2000}}\)=\(\left(\frac{a}{b}\right)^{10}\)x\(\left(\frac{c}{b}\right)^{2000}\)=\(\left(\frac{a}{b}\right)^{10}\)x\(\left(\frac{b}{c}\right)^{-2000}\)

Mà \(\frac{a}{b}\)=\(\frac{b}{c}\)nên M=\(\left(\frac{a}{b}\right)^{10}\)x\(\left(\frac{a}{b}\right)^{-2000}\)=\(\left(\frac{a}{b}\right)^{-1990}\)

4 tháng 9 2019

 tinh m ma

22 tháng 11 2016

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

    \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

Ta có: \(\frac{a}{b}=1\Rightarrow a=b\left(1\right)\)

       \(\frac{b}{c}=1\Rightarrow b=c\left(2\right)\)

        \(\frac{c}{a}=1\Rightarrow c=a\left(3\right)\)

Từ \(\left(1\right),\left(2\right),\left(3\right)\Rightarrow a=b=c\)

\(\Rightarrow A=\frac{a^{199}.b^{201}}{c^{400}}=\frac{a^{199}.a^{201}}{a^{400}}\)

                                             \(=\frac{a^{400}}{a^{400}}=1\)

Vậy \(A=1\)

2 tháng 12 2016

Bạn Lê Hiển Vinh ơi, sao phần đầu tiên các tỉ lệ thức đó lại bằng 1 vậy bạn?

10 tháng 11 2018

1.a)\(2.x-\dfrac{5}{4}=\dfrac{20}{15}\)

\(\Leftrightarrow2.x=\dfrac{20}{15}+\dfrac{5}{4}=\dfrac{4}{3}+\dfrac{5}{4}=\dfrac{16+15}{12}=\dfrac{31}{12}\)

\(\Leftrightarrow x=\dfrac{31}{12}:2=\dfrac{31}{12}.\dfrac{1}{2}=\dfrac{31}{24}\)

b)\(\left(x+\dfrac{1}{3}\right)^3=\left(-\dfrac{1}{8}\right)\)

\(\Leftrightarrow\left(x+\dfrac{1}{3}\right)^3=\left(-\dfrac{1}{2}\right)^3\)

\(\Leftrightarrow x+\dfrac{1}{3}=-\dfrac{1}{2}\)

\(\Leftrightarrow x=-\dfrac{1}{2}-\dfrac{1}{3}=-\dfrac{5}{6}\)

2.Theo đề bài, ta có: \(\dfrac{a}{2}=\dfrac{b}{3}\)\(a+b=-15\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{a+b}{2+3}=\dfrac{-15}{5}=-3\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{2}=-3\Rightarrow a=-6\\\dfrac{b}{3}=-3\Rightarrow b=-9\end{matrix}\right.\)

3.Ta xét từng trường hợp:

-TH1:\(\left\{{}\begin{matrix}x+1>0\\x-2< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>-1\\x< 2\end{matrix}\right.\)\(\Rightarrow x\in\left\{0;1\right\}\)

-TH2:\(\left\{{}\begin{matrix}x+1< 0\\x-2>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x< -1\\x>2\end{matrix}\right.\)\(\Rightarrow x\in\varnothing\)

Vậy \(x\in\left\{0;1\right\}\)

4.\(B=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{9}{49}\right)^9=\left(\dfrac{3}{7}\right)^{21}:\left[\left(\dfrac{3}{7}\right)^2\right]^9=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{3}{7}\right)^{18}=\left(\dfrac{3}{7}\right)^3=\dfrac{27}{343}\)

16 tháng 7 2017

a]  x= a/b+c=b/c+a=c/a+b=a+b+c/b+c+c+a+a+b=0

         => x=0

b] 

5 tháng 8 2017

Áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a+b+c}{d}\)=\(\frac{b+c+d}{a}\)\(\frac{c+d+a}{b}\)\(\frac{d+a+b}{c}\)=\(\frac{a+b+c+b+c+d+c+d+a+d+a+b}{d+a+b+c}\)=\(\frac{3a+3b+3c+3d}{a+b+c+d}\)=\(\frac{3\left(a+b+c+d\right)}{a+b+c+d}\)= 3

Vậy k=3