K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2020

+)Ta có:\(\frac{a}{a^,}+\frac{b^,}{b}=1\) \(\iff\)  \(ab+a^,b^,=a^,b\) \(\iff\) \(abc+a^,b^,c^,=a^,bc\) \(\left(1\right)\)

+)Ta có: \(\frac{b}{b^,}+\frac{c^,}{c}=1\)\(\iff\)  \(bc+b^,c^,=b^,c\) \(\iff\) \(a^,bc+a^,b^,c^,=a^,b^,c\) \(\left(2\right)\)

Cộng (1) với (2) vế với vế ta được :

\(\implies\) \(abc+a^,b^,c^,+a^,bc+a^,b^,c^,=a^,bc+a^,b^,c^,\)

\(\implies\) \(abc+a^,b^,c^,=0\left(đpcm\right)\)

1 tháng 3 2020

+)Ta có:\(\frac{a}{a^,}+\frac{b^,}{b}=1\) \(\iff \) \(ab+a^,b^,=a^,b\) \(\iff \) \(abc+a^,b^,c=a^,bc\left(1\right)\)

+)Ta có:\(\frac{b}{b^,}+\frac{c^,}{c}=1\) \(\iff \) \(bc+b^,c^,=b^,c\)\(\iff \) \(a^,bc+a^,b^,c^,=a^,b^,c\left(2\right)\)

Cộng \(\left(1\right)\) với \(\left(2\right)\) vế với vế ta được:\(abc+a^,b^,c+a^,bc+a^,b^,c^,=a^,bc+a^,b^,c\)

\(\implies\) \(abc+a^,b^,c^,=0\left(đpcm\right)\)

25 tháng 9 2017

Ta có : \(\frac{a}{a'}+\frac{b}{b'}=1\) ; \(\frac{b}{b'}+\frac{c}{c'}=1\)

\(\Rightarrow\left(\frac{a}{a'}+\frac{b}{b'}\right)=\left(\frac{b}{b'}+\frac{c}{c'}\right)\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\Rightarrow\frac{a+b-b+c}{a'+b'-b'+c}=\frac{a+1+c}{a'+1+c'}=\frac{a+c}{a'+c'}\)

\(\Rightarrow\frac{a}{a'}=\frac{c}{c'}\)

=> a.c' = a'.c

=> a.c' = a'.c = b.c' = b'.c = a.b' = a'.b

=> abc là số nguyên âm hoặc dương (*)

=> a'b'c' là số nguyên âm hoặc dương (**)

Từ (*) và (**)     

=> -(abc) + a'b'c' = 0 (1)

=> abc+ -(a'b'c') = 0 (2)

Từ (1) và (2) => đpcm

25 tháng 9 2017

Làm chi tiết ra hộ mình

17 tháng 7 2018

Ta có: \(\frac{a}{a'}+\frac{b'}{b}=1\Leftrightarrow\frac{ab+a'b'}{a'b}=1\Leftrightarrow ab+a'b'=a'b\Leftrightarrow abc+a'b'c=a'bc\left(1\right)\)

Lại có: \(\frac{b}{b'}+\frac{c'}{c}=1\Leftrightarrow\frac{bc+b'c'}{b'c}=1\Leftrightarrow bc+b'c'=b'c\Leftrightarrow a'bc+a'b'c'=a'b'c\left(2\right)\)

Từ (1) và (2) => \(abc+a'b'c+a'bc+a'b'c'=a'bc+a'b'c\)

\(\Leftrightarrow abc+a'b'c'=a'bc-a'bc+a'b'c-a'b'c\)

\(\Leftrightarrow abc+a'b'c'=0\left(đpcm\right)\)

2 tháng 1 2020

Câu hỏi của Nguyễn Thị Hồng Nhung - Toán lớp 7 - Học toán với OnlineMath

26 tháng 10 2021

tại sao con cò lại bé bé

16 tháng 11 2017

\(\dfrac{a}{a'}+\dfrac{b'}{b}=1\Rightarrow\dfrac{a}{a'}\cdot\dfrac{b}{b'}+\dfrac{b'}{b}\cdot\dfrac{b}{b'}=\dfrac{b}{b'}\Rightarrow\dfrac{ab}{a'b'}+1=\dfrac{b}{b'}\left(1\right)\)

\(\dfrac{b}{b'}+\dfrac{c'}{c}=1\Rightarrow\dfrac{b}{b'}=1-\dfrac{c'}{c}\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow\dfrac{ab}{a'b'}=-\dfrac{c'}{c}\Rightarrow abc=-a'b'c'\Rightarrow abc+a'b'c'=0\)

Vậy \(abc+a'b'c'=0\left(dpcm\right)\)

16 tháng 11 2017

Help me vs mấy chế ơi

20 tháng 9 2017

\(\frac{a}{a}+\frac{b}{b}=1+1=1\)

Cái gì đang diễn ra, 1 + 1 = 1. (XỈU)

24 tháng 9 2017

Ta có: \(\frac{a}{a'}+\frac{b'}{b}=1\)

\(=>\frac{ab+a'b'}{a'b}=1\)

\(=>ab+a'b'=a'b\left(1\right)\)

Ta lại có:

\(\frac{b}{b'}+\frac{c'}{c}=1\)

\(=>\frac{bc+b'c'}{b'c}=1\)

\(=>bc+b'c'=b'c\)

Nhân (1) cho c, ta được:

\(abc+a'b'c=a'bc\left(3\right)\)

Nhân (2) cho a', ta được:

\(a'bc+a'b'c'=a'b'c\left(4\right)\)

Cộng (3) với (4), ta được: 

\(abc+a'b'c+a'bc+a'b'c'=a'bc+a'b'c\)

\(abc+a'b'c=ab'c+a'b'c-a'b'c-a'bc\)

\(=>abc+a'b'c'=0\left(đpcm\right)\)

Câu 1 :Cho tỉ lệ thức a/b=c/d với b,c,d khác 0và c khác -dCmr: a+b/b=c+d/dCâu 2: cho tỉ lệ thức a/b=c/d với b,c,d khác 0 và a khác -b,c khác -d.Cmr: a/a+b=c/c+dCâu 3: cho a+b/a-b=c+d/c-d(a,b,c,d khác 0 và a khác b, c khác âm dương c)Cmr a/b=c/dCâu 4: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0 Cmr ac/bd=a^2+c^2 /b^2+d^2Câu 5: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0 và c khác d Cmr: (a-b)^2/(c-d)^2=ab/cdCâu 6: cho tỉ lệ thức a/b=c/d...
Đọc tiếp

Câu 1 :Cho tỉ lệ thức a/b=c/d với b,c,d khác 0và c khác -d

Cmr: a+b/b=c+d/d

Câu 2: cho tỉ lệ thức a/b=c/d với b,c,d khác 0 và a khác -b,c khác -d.

Cmr: a/a+b=c/c+d

Câu 3: cho a+b/a-b=c+d/c-d(a,b,c,d khác 0 và a khác b, c khác âm dương c)

Cmr a/b=c/d

Câu 4: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0 

Cmr ac/bd=a^2+c^2 /b^2+d^2

Câu 5: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0 và c khác d 

Cmr: (a-b)^2/(c-d)^2=ab/cd

Câu 6: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0 và khác-d

Cmr: (a+b)^2014/(c+d)^2014=a^2014+b^2014/c^1014+d^2014

Câu 7:cho a/c=c/d với a,b,c khác 0 

Cmr a/b=a^2+c^2/b^2+d^2

Câu 8: cho a/c=c/d với a,b,c khác 0

Cmr b-a/a=b^2-a^2/a^2+c^2

Câu 9:cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0 và a khác âm dương 5/3b; khác âm dương 5/3d khác 0

Cmr: các tỉ lệ thức sau: 3a+5b/3a-5b=3c+5d/3c-5d

Câu 10: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0

Cmr: 7a^2+5ac/7b^2-5ac=7a^2+5bd/7b^2-5bd

3
22 tháng 11 2018

Câu 1 

Ta có : \(\frac{a}{b}=\frac{c}{d}=>\left(\frac{a}{b}+1\right)=\left(\frac{c}{d}+1\right)\left(=\right)\frac{a+b}{b}=\frac{c+d}{d}\)

=> ĐPCM

Câu 2

Ta có \(\frac{a}{b}=\frac{c}{d}=>\frac{b}{a}=\frac{d}{c}=>\left(\frac{b}{a}+1\right)=\left(\frac{d}{c}+1\right)\left(=\right)\frac{b+a}{a}=\frac{d+c}{c}=>\frac{a}{b+a}=\frac{c}{d+c}\)

=> ĐPCM

Câu 3

22 tháng 11 2018

Câu 3

Ta có \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(=) (a+b).(c-d)=(a-b).(c+d)(=)ac-ad+bc-bd=ac+ad-bc-bd(=)-ad+bc=ad-bc(=) bc+bc=ad+ad(=)2bc=2ad(=)bc=ad=> \(\frac{a}{b}=\frac{c}{d}\)

=> ĐPCM

Câu 4 

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(=>\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Ta có \(\frac{ac}{bd}=\frac{bk.dk}{bd}=k^2\left(1\right)\)

Lại có \(\frac{a^2+c^2}{b^2+d^2}=\frac{b^2k^2+c^2k^2}{b^2+d^2}=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(2\right)\)

Từ (1) và (2) => ĐPCM