K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2016

Ta có : \(\frac{a}{2}=\frac{b}{3};\frac{a}{4}=\frac{c}{9}\)

Quy đồng : \(\frac{a}{8}=\frac{b}{12}=\frac{c}{18};a^3+b^3+c^3=-1009\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

  \(\frac{a}{8}=\frac{b}{12}=\frac{c}{18};\frac{a^3+b^3+c^3}{8^3+12^3+18^3}=\frac{-1009}{8072}=-\frac{1}{8}\)

\(\Rightarrow\frac{a}{8}=-\frac{1}{8}\Rightarrow a=-1\)

\(\Rightarrow\frac{b}{12}=-\frac{1}{8}\Rightarrow b=-\frac{3}{2}\)

\(\Rightarrow\frac{c}{18}=-\frac{1}{8}\Rightarrow c=-\frac{9}{4}\)

1 tháng 8 2016

Hỏi đáp Toán

20 tháng 7 2016

Ta có : 

\(\frac{a}{2}=\frac{b}{3};\frac{a}{4}=\frac{c}{9}\)

\(\Rightarrow\frac{a}{4}=\frac{b}{6}=\frac{c}{9}\)

\(\Rightarrow\frac{a^3}{64}=\frac{b^3}{216}=\frac{c^3}{729}\)

Áp dụng c/t tỉ lệ thức = nhau ta có : 

\(\frac{a^3}{64}=\frac{b^3}{216}=\frac{c^3}{729}=\frac{a^3+b^3+c^3}{64+216+729}=\frac{-1009}{1009}=-1\)

  • \(\frac{a^3}{64}=-1\Rightarrow a^3=-64\Rightarrow a=-4\)
  • \(\frac{b^3}{216}=-1\Rightarrow b^3=-216\Rightarrow a=-6\)
  • \(\frac{c^3}{729}=-1\Rightarrow c^3=-729\Rightarrow a=-9\)

Vậy a = -4 b = -6 c = -9

23 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

23 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

3 tháng 5 2016

( a + b ) . ( a + 1) ( b+1)
= 3. [a( b + 1) +( b + 1)]
= 3. [ab + a + b + 1]
= 3. [ -5 +3 + 1]
= -3

1 tháng 3 2018

Bài 1) Chứng minh rằng các biểu thức sau luôn có giá trị âm với mọi giá trị của biến: 
a) 9x^2+12x-15 
=-(9x^2-12x+4+11) 
=-[(3x-2)^2+11] 
=-(3x-2)^2 - 11. 
Vì (3x-2)^2 không âm với mọi x suy ra -(3x-2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x 
Do đó -[(3*x)-2]^2-11 < 0 với mọi giá trị của x. 
Hay -9*x^2 + 12*x -15 < 0 với mọi giá trị của x. 

b) -5 – (x-1)*(x+2) 
= -5-(x^2+x-2) 
=-5- (x^2+2x.1/2 +1/4 - 1/4-2) 
=-5-[(x-1/2)^2 -9/4] 
=-5-(x-1/2)^2 +9/4 
=-11/4 - (x-1/2)^2 
Vì (x-1/2)^2 không âm với mọi x suy ra -(x-1/2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x 
Do đó -11/4 - (x-1/2)^2 < 0 với mọi giá trị của x. 
Hay -5 – (x-1)*(x+2) < 0 với mọi giá trị của x. 

Bài 2) 
a) x^4+x^2+2 
Vì x^4 +x^2 lớn hơn hoặc bằng 0 vơi mọi x 
suy ra x^4+x^2+2 >=2 
Hay x^4+x^2+2 luôn dương với mọi x. 

b) (x+3)*(x-11) + 2003 
= x^2-8x-33 +2003 
=x^2-8x+16b + 1954 
=(x-4)^2 + 1954 >=1954 
Vậy biểu thức luôn có giá trị dương với mọi giá trị của biến

1 tháng 3 2018

bị ''rảnh'' ak ? 

tự hỏi r tự trả lời

6 tháng 10 2015

Ta có: \(\frac{b}{3}=\frac{a}{2};\frac{a}{4}=\frac{c}{9}\Rightarrow\frac{b}{6}=\frac{a}{4}=\frac{c}{9}=\frac{b^3}{216}=\frac{a^3}{64}=\frac{c^3}{729}=\frac{-1009}{1009}=-1\)

\(\Rightarrow\frac{b^3}{216}=-1\Rightarrow b^3=-216\Rightarrow b=-6\)

\(\frac{a^3}{64}=-1\Rightarrow a^3=-64\Rightarrow a=-4\)

\(\frac{c^3}{729}=-1\Rightarrow c^3=-729\Rightarrow c=-9\)

a) \(A+B=-12x^2y^4-6x^2y^4=-18x^2y^4\)

\(A+C=-12x^2y^4+9x^2y^4=-3x^2y^4\)

\(B+C=-6x^2y^4+9x^2y^4=3x^2y^4\)

26 tháng 3 2021

a) A+B=−12x2y4−6x2y4=−18x2y4A+B=−12x2y4−6x2y4=−18x2y4

A+C=−12x2y4+9x2y4=−3x2y4A+C=−12x2y4+9x2y4=−3x2y4

B+C=−6x2y4+9x2y4=3x2y